Skip to content
Snippets Groups Projects
rootable.py 5.88 KiB
Newer Older
  • Learn to ignore specific revisions
  • import numpy as np
    from numpy.typing import ArrayLike
    import uproot as ur
    
    from typing import Any, Iterable
    
    from .detectors import PXD
    from .common import FancyDict
    try:
        import pandas as pd
        _pandas = True
    except ImportError:
        _pandas = False
    
    
    
    class Rootable:
        """
        this class uses uproot to load pxd data from root files and converts them into
        native python data structures.
        it can load the cluster information, uses the digits to generate the adc matrices,
        coordinates, layer and ladders and finally also monte carlo data.
        """
    
    johannes bilk's avatar
    johannes bilk committed
        def __init__(self, data: dict = None) -> None:
    
            self.pxd = PXD()
    
            # indices for events to be imported
            self.eventIndices = None
    
    
            # the root event tree
            self.eventTree = None
    
            # import flags
            self.gotClusters = False
            self.gotDigits = False
            self.gotMatrices = False
            self.gotCoordinates = False
            self.gotMCData = False
            self.gotFiltered = False
    
    johannes bilk's avatar
    johannes bilk committed
        def where(self, *conditions: str) -> dict:
    
            return self.pxd.where(*conditions)
    
        @property
        def data(self) -> dict:
            return {'pxd': self.pxd.data}
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __repr__(self) -> str:
    
            return str(self.pxd)
    
        def __iter__(self) -> Iterable:
    
            return iter(self.pxd.data)
    
        def __len__(self) -> int:
    
            return len(self.pxd.data)
    
        def __getitem__(self, index: str | int | ArrayLike) -> FancyDict:
            """
            this makes the class subscriptable, one can retrieve one coloumn by using
            strings as keywords, or get a row by using integer indices or arrays
            """
            if isinstance(index, str):
                return self.data['pxd'][index]
            return FancyDict({key: value[index] for key, value in self.data['pxd'].items()})
    
    
        @property
        def numEvents(self) -> int:
    
            return len(np.unique(self.pxd['eventNumber']))
    
    
        @property
        def numClusters(self) -> int:
    
            return len(self.pxd['clsCharge'])
    
    
        @property
        def particles(self) -> list:
    
            return np.unique(self.pxd['pdg'])
    
        def keys(self) -> dict:
            return {'pxd': self.pxd.keys()}
    
        def items(self) -> dict:
            return {'pxd': self.pxd.items()}
    
        def values(self) -> dict:
            return {'pxd': self.pxd.values()}
    
    
        def get(self, key: str) -> np.ndarray:
    
            return self.pxd.get(key)
    
        def pop(self, key: str) -> None:
    
            return self.pxd.pop(key)
    
        def stack(self, *columns, toKey: str, pop: bool = True) -> None:
    
           self.pxd.stack(*columns, toKey=toKey)
    
        def loadData(self, fileName: str, includeUnSelected: bool = False) -> None:
    
            Reads the file off of the hard drive; it automatically creates event numbers.
    
            file: str = it's the whole file path + .root ending
            """
    
            file, _, treeName = fileName.partition(':')
    
            self.includeUnSelected = includeUnSelected
    
    
            if not file.endswith('.root'):
                file += '.root'
    
            if not treeName:
                treeName = 'tree'
    
            try: # checking if file exists
                with open(file, 'r') as f:
                    self.eventTree = ur.open(f'{file}:{treeName}')
            except FileNotFoundError:
                raise FileNotFoundError(f"File {file} not found.")
    
    
        def getClusters(self) -> None:
            self.gotClusters = True
    
            self.pxd.getClusters(self.eventTree, self.includeUnSelected)
    
        def getDigits(self) -> None:
            self.gotDigits = True
    
            self.pxd.getDigits(self.eventTree, self.includeUnSelected)
    
    
        def getMatrices(self, matrixSize: tuple = (9, 9)) -> None:
    
            self.gotMatrices = True
            self.pxd.getMatrices(self.eventTree, matrixSize=matrixSize)
    
        def getCoordinates(self) -> None:
    
            self.pxd.getCoordinates(self.eventTree)
    
            self.pxd.getSphericals()
    
        def getLayers(self) -> None:
    
            self.pxd.getLayers(self.eventTree)
    
    
        def getMCData(self) -> None:
    
            self.gotMCData = True
            self.pxd.getMCData(self.eventTree)
    
        def getFiltered(self) -> None:
            self.gotFiltered = True
            self.pxd.getFiltered(self.eventTree)
    
        def asStructuredArray(self) -> np.ndarray:
    
            """
            this converts the data dict of this class into a structured numpy array
            """
            # Create a list to hold the dtype specifications
            dtype = []
    
            # Iterate through the dictionary keys and values
    
            for key, value in self.pxd.items():
    
                # Determine the data type of the first value in the list
                sampleValue = value[0]
    
                if isinstance(sampleValue, np.ndarray):
                    # If the value is an array, use its shape and dtype
    
                    shapes = [val.shape for val in value]
                    if not all(shape == shapes[0] for shape in shapes):
                           fieldDtype = object
                    else:
                        fieldDtype = (sampleValue.dtype, sampleValue.shape)
    
                else:
                    # Otherwise, use the type of the value itself
                    fieldDtype = type(sampleValue)
    
                # Append the key and data type to the dtype list
                dtype.append((key, fieldDtype))
    
            # Convert the dictionary to a list of tuples
    
            keys = list(self.pxd.keys())
            dataList = [tuple(self.pxd[key][i] for key in keys) for i in range(len(self.pxd[keys[0]]))]
    
    
            # Create the structured array
            structuredArray = np.array(dataList, dtype=dtype)
    
    
            return structuredArray
    
    
        def asDict(self) -> dict:
            return {'pxd': self.pxd.data}
    
        def asDataFrame(self, popMatrices: bool = False):
            if _pandas:
                if self.gotMatrices and not popMatrices:
                    raise TypeError('pandas does not handle 2D matrices')
                if popMatrices:
                    self.pxd.pop('cluster')
                return pd.DataFrame(self.pxd.data)
            else:
                raise ImportError('pandas is not installed on this system')