Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fromRoot
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
johannes bilk
fromRoot
Commits
e4d3420e
Commit
e4d3420e
authored
1 year ago
by
johannes bilk
Browse files
Options
Downloads
Patches
Plain Diff
wrote comments/doc strings
parent
0d40ffb1
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
README.md
+75
-1
75 additions, 1 deletion
README.md
rootable/__init__.py
+0
-0
0 additions, 0 deletions
rootable/__init__.py
rootable/rootable.py
+404
-0
404 additions, 0 deletions
rootable/rootable.py
setup.py
+27
-0
27 additions, 0 deletions
setup.py
with
506 additions
and
1 deletion
README.md
+
75
−
1
View file @
e4d3420e
...
...
@@ -9,4 +9,78 @@ native Python formats.
It's using
[
Numpy
](
https://numpy.org
)
and a library called
[
Uproot
](
https://github.com/scikit-hep/uproot5
)
to read and process these damn root files. So far it is specialist for one task
and I will have to work on it to make it actually viable for more use cases. That task
is to extract PXD data from Belle 2 data files.
\ No newline at end of file
is to extract PXD data from Belle 2 data files.
## How to use this?
This is a single class, that needs to be instantiated, it doesn't take any arguments.
Just import it like this:
> from rootable import Rootable
Then you can create an instance:
> loadFromRoot = Rootable()
and load the root file and all the data:
> loadFromRoot.loadData('/root-files/slow_pions_2.root')
> loadFromRoot.getClusters()
> loadFromRoot.genCoordisnate()
> loadFromRoot.getLayers()
> loadFromRoot.getMatrices()
> loadFromRoot.getMCData()
This commands don't have any return value, but instead work in-place.
Then all data is stored inside the object as dict:
> loadFromRoot.data
Here follows a list of keywords contained in the dict:
-
cluster data:
-
'eventNumbers'
-
'clsCharge'
-
'seedCharge'
-
'clsSize'
-
'uSize'
-
'vSize'
-
'uPosition'
-
'vPosition'
-
'sensorID'
-
coordinates:
-
'xPosition'
-
'yPosition'
-
'zPosition'
-
layers:
-
'layers'
-
'ladder'
-
matrices:
-
'cluster'
-
Monte Carlo data:
-
'momentumX'
-
'momentumY'
-
'momentumZ'
-
'pdg'
-
'clsNumber'
Since the class is subscriptable one can access every element directly using the keywords
like this:
>
And finally you can convert the dict into a structured Numpy array by simply writing:
> loadFromRoot.loadFromRoot()
This last command returns a Numpy array. From there the user can save it using
Numpys build-in functions, convert it to Pandas or use it in any way that is
compatible with Numpy.
## Installation
Download the repo, navigate in the terminal to the folder and run the following script:
> python3 setup.py
\ No newline at end of file
This diff is collapsed.
Click to expand it.
rootable/__init__.py
0 → 100644
+
0
−
0
View file @
e4d3420e
This diff is collapsed.
Click to expand it.
rootable/rootable.py
0 → 100644
+
404
−
0
View file @
e4d3420e
import
numpy
as
np
from
numpy.typing
import
ArrayLike
import
uproot
as
ur
class
Rootable
:
"""
this class uses uproot to load pxd data from root files and converts them into
native python data structures.
it can load the cluster information, uses the digits to generate the adc matrices,
coordinates, layer and ladders and finally also monte carlo data.
"""
def
__init__
(
self
)
->
None
:
# these are the sensor IDs of the pxd modules/panels from the root file, they are
# use to identify on which panels a cluster event happened
self
.
panelIDs
=
np
.
array
([
8480
,
8512
,
8736
,
8768
,
8992
,
9024
,
9248
,
9280
,
9504
,
9536
,
9760
,
9792
,
10016
,
10048
,
10272
,
10304
,
16672
,
16704
,
16928
,
16960
,
17184
,
17216
,
17440
,
17472
,
17696
,
17728
,
17952
,
17984
,
18208
,
18240
,
18464
,
18496
,
18720
,
18752
,
18976
,
19008
,
19232
,
19264
,
19488
,
19520
])
# every line in this corresponds to one entry in the array above, this is used
# to put the projected uv plane in the right position
self
.
panelShifts
=
np
.
array
([[
1.3985
,
0.2652658
,
3.68255
],
[
1.3985
,
0.23238491
,
-
0.88255
],
[
0.80146531
,
1.17631236
,
3.68255
],
[
0.82407264
,
1.15370502
,
-
0.88255
],
[
-
0.2582769
,
1.3985
,
3.68255
],
[
-
0.2322286
,
1.3985
,
-
0.88255
],
[
-
1.17531186
,
0.80246583
,
3.68255
],
[
-
1.15510614
,
0.82267151
,
-
0.88255
],
[
-
1.3985
,
-
0.2645974
,
3.68255
],
[
-
1.3985
,
-
0.23012119
,
-
0.88255
],
[
-
0.80591227
,
-
1.17186534
,
3.68255
],
[
-
0.82344228
,
-
1.15433536
,
-
0.88255
],
[
0.26975836
,
-
1.3985
,
3.68255
],
[
0.23326624
,
-
1.3985
,
-
0.88255
],
[
1.1746111
,
-
0.80316652
,
3.68255
],
[
1.15205703
,
-
0.82572062
,
-
0.88255
],
[
2.2015
,
0.26959865
,
5.01305
],
[
2.2015
,
0.2524582
,
-
1.21305
],
[
1.77559093
,
1.32758398
,
5.01305
],
[
1.78212569
,
1.31626522
,
-
1.21305
],
[
0.87798948
,
2.03516717
,
5.01305
],
[
0.88478563
,
2.03124357
,
-
1.21305
],
[
-
0.26129975
,
2.2015
,
5.01305
],
[
-
0.25184137
,
2.2015
,
-
1.21305
],
[
-
1.32416655
,
1.77756402
,
5.01305
],
[
-
1.31417539
,
1.78333226
,
-
1.21305
],
[
-
2.03421133
,
0.87964512
,
5.01305
],
[
-
2.02960691
,
0.88762038
,
-
1.21305
],
[
-
2.2015
,
-
0.25954151
,
5.01305
],
[
-
2.2015
,
-
0.24969109
,
-
1.21305
],
[
-
1.77636043
,
-
1.32625112
,
5.01305
],
[
-
1.78138268
,
-
1.31755219
,
-
1.21305
],
[
-
0.87493138
,
-
2.03693277
,
5.01305
],
[
-
0.8912978
,
-
2.02748378
,
-
1.21305
],
[
0.26489725
,
-
2.2015
,
5.01305
],
[
0.25364439
,
-
2.2015
,
-
1.21305
],
[
1.3269198
,
-
1.7759744
,
5.01305
],
[
1.32258793
,
-
1.77847528
,
-
1.21305
],
[
2.03616649
,
-
0.87625871
,
5.01305
],
[
2.02936825
,
-
0.8880338
,
-
1.21305
]])
# every entry here corresponds to the entries in the array above, these are
# used for rotating the projected uv plane
self
.
panelRotations
=
np
.
array
([
90
,
90
,
135
,
135
,
180
,
180
,
225
,
225
,
270
,
270
,
315
,
315
,
360
,
360
,
405
,
405
,
90
,
90
,
120
,
120
,
150
,
150
,
180
,
180
,
210
,
210
,
240
,
240
,
270
,
270
,
300
,
300
,
330
,
330
,
360
,
360
,
390
,
390
,
420
,
420
])
# the layer and ladder arrays, for finding them from sensor id
self
.
panelLayer
=
np
.
array
([
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
,
2
])
self
.
panelLadder
=
np
.
array
([
1
,
1
,
2
,
2
,
3
,
3
,
4
,
4
,
5
,
5
,
6
,
6
,
7
,
7
,
8
,
8
,
9
,
9
,
10
,
10
,
12
,
12
,
13
,
13
,
14
,
14
,
15
,
15
,
16
,
16
,
17
,
17
,
18
,
18
,
19
,
19
,
20
,
20
,
21
,
21
])
# all transpormaations are stored in a dict, with the sensor id as a keyword
self
.
transformation
=
{}
self
.
layersLadders
=
{}
for
i
in
range
(
len
(
self
.
panelIDs
)):
self
.
transformation
[
str
(
self
.
panelIDs
[
i
])]
=
[
self
.
panelShifts
[
i
],
self
.
panelRotations
[
i
]]
self
.
layersLadders
[
str
(
self
.
panelIDs
[
i
])]
=
[
self
.
panelLayer
[
i
],
self
.
panelLadder
[
i
]]
# these are the branch names for cluster info in the root file
self
.
gotClusters
=
False
self
.
clusters
=
[
'
PXDClusters/PXDClusters.m_clsCharge
'
,
'
PXDClusters/PXDClusters.m_seedCharge
'
,
'
PXDClusters/PXDClusters.m_clsSize
'
,
'
PXDClusters/PXDClusters.m_uSize
'
,
'
PXDClusters/PXDClusters.m_vSize
'
,
'
PXDClusters/PXDClusters.m_uPosition
'
,
'
PXDClusters/PXDClusters.m_vPosition
'
,
'
PXDClusters/PXDClusters.m_sensorID
'
]
# these are the branch names for cluster digits in the root file
self
.
digits
=
[
'
PXDDigits/PXDDigits.m_uCellID
'
,
'
PXDDigits/PXDDigits.m_vCellID
'
,
'
PXDDigits/PXDDigits.m_charge
'
]
# this establishes the relationship between clusters and digits
# because for some reaseon the branch for digits has a different
# size than the cluster branch
self
.
clusterToDigis
=
'
PXDClustersToPXDDigits/m_elements/m_elements.m_to
'
# these are the branch names for monte carlo data in the root file
self
.
mcData
=
[
'
MCParticles/MCParticles.m_pdg
'
,
'
MCParticles/MCParticles.m_momentum_x
'
,
'
MCParticles/MCParticles.m_momentum_y
'
,
'
MCParticles/MCParticles.m_momentum_z
'
]
# these two establish the relation ship to an from clusters and monte carlo
# there more entries than in the cluster data, but there still mc data missing
# for some cluster files
self
.
clusterToMC
=
'
PXDClustersToMCParticles/m_elements/m_elements.m_to
'
self
.
mcToCluster
=
'
PXDClustersToMCParticles/m_elements/m_elements.m_from
'
# this dict stores the data
self
.
data
=
{}
def
__getitem__
(
self
,
index
:
str
|
int
|
ArrayLike
)
->
np
.
ndarray
|
dict
:
"""
this makes the class subscriptable, one can retrieve one coloumn by using
strings as keywords, or get a row by using integer indices or arrays
"""
if
isinstance
(
index
,
str
):
return
self
.
data
[
index
]
return
{
key
:
value
[
index
]
for
key
,
value
in
self
.
data
.
items
()}
def
loadData
(
self
,
file
:
str
)
->
None
:
"""
reads the file off of the harddrive, it automatically creates event numbers
file: str = it
'
s the whole file path + .root ending
"""
self
.
eventTree
=
ur
.
open
(
f
'
{
file
}
:tree
'
)
self
.
_genEventNumbers
()
def
_genEventNumbers
(
self
)
->
None
:
"""
a private method that gets called on file import
it generates the event numbers from the jagged arrays
coming from the branches
"""
eventNumbers
=
[]
clusters
=
self
.
eventTree
.
arrays
(
'
PXDClusters/PXDClusters.m_clsCharge
'
,
library
=
'
np
'
)[
'
PXDClusters/PXDClusters.m_clsCharge
'
]
for
i
in
range
(
len
(
clusters
)):
eventNumbers
.
append
(
np
.
array
([
i
]
*
len
(
clusters
[
i
])))
self
.
data
[
'
eventNumbers
'
]
=
self
.
_flatten
(
eventNumbers
)
def
_getData
(
self
,
keyword
:
str
,
library
:
str
=
'
np
'
)
->
np
.
ndarray
:
"""
a private method for converting branches into something useful, namely
into numpy arrays, if the keyward library is set to np.
keyword: str = the full branch name
library: str = can be
'
np
'
(numpy),
'
pd
'
(pandas) or
'
ak
'
(akward)
see uproot documentation for more info
"""
try
:
data
=
self
.
eventTree
.
arrays
(
keyword
,
library
=
library
)[
keyword
]
return
self
.
_flatten
(
data
)
except
:
return
KeyError
def
_flatten
(
self
,
structure
:
ArrayLike
,
maxDepth
:
int
=
None
,
currentDepth
:
int
=
0
)
->
np
.
ndarray
:
"""
this is a private function, that gets called during loading branches
it flattens ragged array, one can set the depths to which one wants to flatten
structure: the list/array to flatten
maxDepth: int = the amount of flattening
currentDepth: int = don
'
t touch this, it
'
s used for recursively calling
"""
flat_list
=
[]
for
element
in
structure
:
if
isinstance
(
element
,
(
list
,
np
.
ndarray
))
and
(
maxDepth
is
None
or
currentDepth
<
maxDepth
):
flat_list
.
extend
(
self
.
_flatten
(
element
,
maxDepth
,
currentDepth
+
1
))
else
:
flat_list
.
append
(
element
)
return
np
.
array
(
flat_list
,
dtype
=
object
)
def
getClusters
(
self
)
->
None
:
"""
this uses the array from __init__ to load different branches into the data dict
"""
self
.
gotClusters
=
True
for
branch
in
self
.
clusters
:
data
=
self
.
_getData
(
branch
)
keyword
=
branch
.
split
(
'
_
'
)[
-
1
]
self
.
data
[
keyword
]
=
data
def
getMatrices
(
self
)
->
None
:
"""
loads the digit branches into arrays and converts them into adc matrices
"""
uCellIDs
=
self
.
eventTree
.
arrays
(
self
.
digits
[
0
],
library
=
'
np
'
)[
self
.
digits
[
0
]]
vCellIDs
=
self
.
eventTree
.
arrays
(
self
.
digits
[
1
],
library
=
'
np
'
)[
self
.
digits
[
1
]]
cellCharges
=
self
.
eventTree
.
arrays
(
self
.
digits
[
2
],
library
=
'
np
'
)[
self
.
digits
[
2
]]
# this establishes the relation between digits and clusters, it's still
# shocking to me, that this is necessary, why aren't digits stored in the
# same way as clusters, than one wouldn't need to jump through hoops just
# to have the data in a usable und sensible manner
# root is such a retarded file format
clusterDigits
=
self
.
eventTree
.
arrays
(
self
.
clusterToDigis
,
library
=
'
np
'
)[
self
.
clusterToDigis
]
self
.
data
[
'
cluster
'
]
=
self
.
_genMatrices
(
uCellIDs
,
vCellIDs
,
cellCharges
,
clusterDigits
).
astype
(
'
int
'
)
def
_genMatrices
(
self
,
uCellIDs
:
ArrayLike
,
vCellIDs
:
ArrayLike
,
cellCharges
:
ArrayLike
,
clusterDigits
:
ArrayLike
,
matrixSize
:
tuple
=
(
9
,
9
))
->
np
.
ndarray
:
"""
this takes the ragged/jagged digit arrays and converts them into 9x9 matrices
it
'
s a rather slow process because of all the looping
"""
plotRange
=
np
.
array
(
matrixSize
)
//
2
events
=
[]
for
event
in
range
(
len
(
cellCharges
)):
adcValues
=
[]
digitsU
=
np
.
array
(
uCellIDs
[
event
])
digitsV
=
np
.
array
(
vCellIDs
[
event
])
digitsCharge
=
np
.
array
(
cellCharges
[
event
])
digitIndices
=
clusterDigits
[
event
]
for
indices
in
digitIndices
:
cacheImg
=
np
.
zeros
(
matrixSize
)
maxChargeIndex
=
digitsCharge
[
indices
].
argmax
()
uMax
,
vMax
=
digitsU
[
indices
[
maxChargeIndex
]],
digitsV
[
indices
[
maxChargeIndex
]]
uPos
,
vPos
=
digitsU
[
indices
]
-
uMax
+
plotRange
[
0
],
digitsV
[
indices
]
-
vMax
+
plotRange
[
1
]
valid_indices
=
(
uPos
>=
0
)
&
(
uPos
<
matrixSize
[
0
])
&
(
vPos
>=
0
)
&
(
vPos
<
matrixSize
[
1
])
cacheImg
[
uPos
[
valid_indices
].
astype
(
int
),
vPos
[
valid_indices
].
astype
(
int
)]
=
digitsCharge
[
indices
][
valid_indices
]
adcValues
.
append
(
cacheImg
)
events
.
extend
(
adcValues
)
return
np
.
array
(
events
,
dtype
=
object
)
def
genCoordisnate
(
self
)
->
None
:
"""
converting the uv coordinates, together with sensor ids, into xyz coordinates
"""
if
self
.
gotClusters
is
False
:
self
.
getClusters
()
xcoords
,
ycoords
,
zcoords
=
self
.
_getCartesian
(
self
.
data
[
'
uPosition
'
],
self
.
data
[
'
vPosition
'
],
self
.
data
[
'
sensorID
'
])
self
.
data
[
'
xPosition
'
]
=
xcoords
self
.
data
[
'
yPosition
'
]
=
ycoords
self
.
data
[
'
zPosition
'
]
=
zcoords
def
_getCartesian
(
self
,
uPositions
:
ArrayLike
,
vPositions
:
ArrayLike
,
sensorIDs
:
ArrayLike
)
->
tuple
[
np
.
ndarray
]:
"""
a private method for transposing/converting 2d uv coords into 3d xyz coordinates
"""
length
=
len
(
sensorIDs
)
xArr
,
yArr
,
zArr
=
np
.
zeros
(
length
),
np
.
zeros
(
length
),
np
.
zeros
(
length
)
# iterting over the cluster arrays
for
index
,
(
u
,
v
,
sensor_id
)
in
enumerate
(
zip
(
uPositions
,
vPositions
,
sensorIDs
)):
# grabbing the shift vector and rotation angle
shift
,
angle
=
self
.
transformation
[
str
(
sensor_id
)]
# setting up rotation matrix
theta
=
np
.
deg2rad
(
angle
)
rotMatrix
=
np
.
array
([[
np
.
cos
(
theta
),
-
np
.
sin
(
theta
),
0
],
[
np
.
sin
(
theta
),
np
.
cos
(
theta
),
0
],
[
0
,
0
,
1
]])
# projecting uv coordinates into 3d space
point
=
np
.
array
([
u
,
0
,
v
])
# shifting and rotating the projected vector
shifted
=
rotMatrix
.
dot
(
point
)
+
shift
xArr
[
index
],
yArr
[
index
],
zArr
[
index
]
=
shifted
return
xArr
,
yArr
,
zArr
def
getLayers
(
self
)
->
None
:
"""
looks up the corresponding layers and ladders for every cluster
"""
if
self
.
gotClusters
is
False
:
self
.
getClusters
()
layers
,
ladders
=
[],
[]
for
id
in
self
.
data
[
'
sensorID
'
]:
layer
,
ladder
=
self
.
layersLadders
[
str
(
id
)]
layers
.
append
(
layer
)
ladders
.
append
(
ladder
)
self
.
data
[
'
layers
'
]
=
np
.
array
(
layers
)
self
.
data
[
'
ladder
'
]
=
np
.
array
(
ladders
)
def
getMCData
(
self
)
->
None
:
"""
this loads the monte carlo from the root file
"""
# the monte carlo data, they are longer than the cluster data
pdg
=
self
.
eventTree
.
arrays
(
self
.
mcData
[
0
],
library
=
'
np
'
)[
self
.
mcData
[
0
]]
momentumX
=
self
.
eventTree
.
arrays
(
self
.
mcData
[
1
],
library
=
'
np
'
)[
self
.
mcData
[
1
]]
momentumY
=
self
.
eventTree
.
arrays
(
self
.
mcData
[
2
],
library
=
'
np
'
)[
self
.
mcData
[
2
]]
momentumZ
=
self
.
eventTree
.
arrays
(
self
.
mcData
[
3
],
library
=
'
np
'
)[
self
.
mcData
[
3
]]
# this loads the relation ships to and from clusters and mc data
# this is the same level of retardedness as with the cluster digits
clusterToMC
=
self
.
eventTree
.
arrays
(
self
.
clusterToMC
,
library
=
'
np
'
)[
self
.
clusterToMC
]
mcToCluster
=
self
.
eventTree
.
arrays
(
self
.
mcToCluster
,
library
=
'
np
'
)[
self
.
mcToCluster
]
# it need the cluster charge as a jagged/ragged array, maybe I could simply
# use the event numbers, but I am too tired to fix this shitty file format
clsCharge
=
self
.
eventTree
.
arrays
(
'
PXDClusters/PXDClusters.m_clsCharge
'
,
library
=
'
np
'
)[
'
PXDClusters/PXDClusters.m_clsCharge
'
]
# reorganizing MC data
momentumXList
=
[]
momentumYList
=
[]
momentumZList
=
[]
pdgList
=
[]
clusterNumbersList
=
[]
for
i
in
range
(
len
(
clusterToMC
)):
# _fillMCList fills in the missing spots, because there are not mc data for
# every cluster, even though there are more entries in this branch than
# in the cluster branch... as I said, the root format is retarded
fullClusterReferences
=
self
.
_fillMCList
(
mcToCluster
[
i
],
clusterToMC
[
i
],
len
(
clsCharge
[
i
]))
clusterNumbersList
.
append
(
fullClusterReferences
)
pdgs
,
xmom
,
ymom
,
zmom
=
self
.
_getMCData
(
fullClusterReferences
,
pdg
[
i
],
momentumX
[
i
],
momentumY
[
i
],
momentumZ
[
i
])
momentumXList
.
append
(
xmom
)
momentumYList
.
append
(
ymom
)
momentumZList
.
append
(
zmom
)
pdgList
.
append
(
pdgs
)
self
.
data
[
'
momentumX
'
]
=
self
.
_flatten
(
momentumXList
)
self
.
data
[
'
momentumY
'
]
=
self
.
_flatten
(
momentumYList
)
self
.
data
[
'
momentumZ
'
]
=
self
.
_flatten
(
momentumZList
)
self
.
data
[
'
pdg
'
]
=
self
.
_flatten
(
pdgList
)
self
.
data
[
'
clsNumber
'
]
=
self
.
_flatten
(
clusterNumbersList
)
def
_findMissing
(
self
,
lst
:
list
,
length
:
int
)
->
list
:
"""
a private method for finding missing elements in mc data arrays
"""
return
sorted
(
set
(
range
(
0
,
length
))
-
set
(
lst
))
def
_fillMCList
(
self
,
fromClusters
:
ArrayLike
,
toClusters
:
ArrayLike
,
length
:
ArrayLike
)
->
list
:
"""
a private method for filling MC data arrays where clusters don
'
t have
any information
"""
missingIndex
=
self
.
_findMissing
(
fromClusters
,
length
)
testList
=
[
-
1
]
*
length
fillIndex
=
0
for
i
in
range
(
len
(
testList
)):
if
i
in
missingIndex
:
testList
[
i
]
=
-
1
else
:
try
:
testList
[
i
]
=
int
(
toClusters
[
fillIndex
])
except
TypeError
:
testList
[
i
]
=
int
(
toClusters
[
fillIndex
][
0
])
fillIndex
+=
1
return
testList
def
_getMCData
(
self
,
toClusters
:
ArrayLike
,
pdgs
:
ArrayLike
,
xMom
:
ArrayLike
,
yMom
:
ArrayLike
,
zMom
:
ArrayLike
)
->
tuple
[
np
.
ndarray
]:
"""
after filling and reorganizing MC data arrays one can finally collect the
actual MC data, where there
'
s data missing I will with zeros
"""
pxList
,
pyList
,
pzList
=
[],
[],
[]
pdgList
=
[]
for
references
in
toClusters
:
if
references
==
-
1
:
pxList
.
append
(
0
)
pyList
.
append
(
0
)
pzList
.
append
(
0
)
pdgList
.
append
(
0
)
else
:
pxList
.
append
(
xMom
[
references
])
pyList
.
append
(
yMom
[
references
])
pzList
.
append
(
zMom
[
references
])
pdgList
.
append
(
pdgs
[
references
])
return
np
.
array
(
pdgList
,
dtype
=
list
),
np
.
array
(
pxList
,
dtype
=
list
),
np
.
array
(
pyList
,
dtype
=
list
),
np
.
array
(
pzList
,
dtype
=
list
)
def
getStructuredArray
(
self
)
->
np
.
ndarray
:
"""
this converts the data dict of this class into a structured numpy array
"""
# Create a list to hold the dtype specifications
dtype
=
[]
# Iterate through the dictionary keys and values
for
key
,
value
in
self
.
data
.
items
():
# Determine the data type of the first value in the list
sampleValue
=
value
[
0
]
if
isinstance
(
sampleValue
,
np
.
ndarray
):
# If the value is an array, use its shape and dtype
fieldDtype
=
(
sampleValue
.
dtype
,
sampleValue
.
shape
)
else
:
# Otherwise, use the type of the value itself
fieldDtype
=
type
(
sampleValue
)
# Append the key and data type to the dtype list
dtype
.
append
((
key
,
fieldDtype
))
# Convert the dictionary to a list of tuples
keys
=
list
(
self
.
data
.
keys
())
dataList
=
[
tuple
(
self
.
data
[
key
][
i
]
for
key
in
keys
)
for
i
in
range
(
len
(
self
.
data
[
keys
[
0
]]))]
# Create the structured array
structuredArray
=
np
.
array
(
dataList
,
dtype
=
dtype
)
return
structuredArray
\ No newline at end of file
This diff is collapsed.
Click to expand it.
setup.py
0 → 100644
+
27
−
0
View file @
e4d3420e
import
setuptools
with
open
(
"
README.md
"
,
"
r
"
)
as
fh
:
description
=
fh
.
read
()
setuptools
.
setup
(
name
=
"
rootable
"
,
version
=
"
0.0.1
"
,
author
=
"
Johannes Bilk
"
,
author_email
=
"
johannes.bilk@physik.uni-giessen.de
"
,
packages
=
[
"
rootable
"
],
description
=
"
A simple packages for extracting PXD data from root files
"
,
long_description
=
description
,
long_description_content_type
=
"
text/markdown
"
,
url
=
"
https://github.com/gituser/test-tackage
"
,
license
=
'
MIT
'
,
python_requires
=
'
>=3.10
'
,
install_requires
=
[],
keywords
=
[
'
python
'
,
'
pxd
'
,
'
root
'
],
classifiers
=
[
"
Development Status :: 3 - Alpha
"
,
"
Intended Audience :: Researchers
"
,
"
Programming Language :: Python :: 3
"
,
"
Operating System :: MacOS :: MacOS X
"
,
"
Operating System :: Microsoft :: Windows
"
,
]
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment