import numpy as np from numpy.typing import ArrayLike import uproot as ur from typing import Any, Iterable from .detectors import PXD from .common import FancyDict try: import pandas as pd _pandas = True except ImportError: _pandas = False class Rootable: """ this class uses uproot to load pxd data from root files and converts them into native python data structures. it can load the cluster information, uses the digits to generate the adc matrices, coordinates, layer and ladders and finally also monte carlo data. """ def __init__(self, data: dict = None) -> None: self.pxd = PXD() # indices for events to be imported self.eventIndices = None # the root event tree self.eventTree = None # import flags self.gotClusters = False self.gotDigits = False self.gotMatrices = False self.gotCoordinates = False self.gotMCData = False self.gotFiltered = False def where(self, *conditions: str) -> dict: return self.pxd.where(*conditions) @property def data(self) -> dict: return {'pxd': self.pxd.data} def __repr__(self) -> str: return str(self.pxd) def __iter__(self) -> Iterable: return iter(self.pxd.data) def __len__(self) -> int: return len(self.pxd.data) def __getitem__(self, index: str | int | ArrayLike) -> FancyDict: """ this makes the class subscriptable, one can retrieve one coloumn by using strings as keywords, or get a row by using integer indices or arrays """ if isinstance(index, str): return self.data['pxd'][index] return FancyDict({key: value[index] for key, value in self.data['pxd'].items()}) @property def numEvents(self) -> int: return len(np.unique(self.pxd['eventNumber'])) @property def numClusters(self) -> int: return len(self.pxd['clsCharge']) @property def particles(self) -> list: return np.unique(self.pxd['pdg']) def keys(self) -> dict: return {'pxd': self.pxd.keys()} def items(self) -> dict: return {'pxd': self.pxd.items()} def values(self) -> dict: return {'pxd': self.pxd.values()} def get(self, key: str) -> np.ndarray: return self.pxd.get(key) def pop(self, key: str) -> None: return self.pxd.pop(key) def stack(self, *columns, toKey: str, pop: bool = True) -> None: self.pxd.stack(*columns, toKey=toKey) def loadData(self, fileName: str, includeUnSelected: bool = False) -> None: """ Reads the file off of the hard drive; it automatically creates event numbers. file: str = it's the whole file path + .root ending """ file, _, treeName = fileName.partition(':') self.includeUnSelected = includeUnSelected if not file.endswith('.root'): file += '.root' if not treeName: treeName = 'tree' try: # checking if file exists with open(file, 'r') as f: self.eventTree = ur.open(f'{file}:{treeName}') except FileNotFoundError: raise FileNotFoundError(f"File {file} not found.") def getClusters(self) -> None: self.gotClusters = True self.pxd.getClusters(self.eventTree, self.includeUnSelected) def getDigits(self) -> None: self.gotDigits = True self.pxd.getDigits(self.eventTree, self.includeUnSelected) def getMatrices(self, matrixSize: tuple = (9, 9)) -> None: self.gotMatrices = True self.pxd.getMatrices(self.eventTree, matrixSize=matrixSize) def getCoordinates(self) -> None: self.gotCoordinates = True self.pxd.getCoordinates(self.eventTree) def getSphericals(self) -> None: self.pxd.getSphericals() def getLayers(self) -> None: self.pxd.getLayers(self.eventTree) def getMCData(self) -> None: self.gotMCData = True self.pxd.getMCData(self.eventTree) def getFiltered(self) -> None: self.gotFiltered = True self.pxd.getFiltered(self.eventTree) def asStructuredArray(self) -> np.ndarray: """ this converts the data dict of this class into a structured numpy array """ # Create a list to hold the dtype specifications dtype = [] # Iterate through the dictionary keys and values for key, value in self.pxd.items(): # Determine the data type of the first value in the list sampleValue = value[0] if isinstance(sampleValue, np.ndarray): # If the value is an array, use its shape and dtype shapes = [val.shape for val in value] if not all(shape == shapes[0] for shape in shapes): fieldDtype = object else: fieldDtype = (sampleValue.dtype, sampleValue.shape) else: # Otherwise, use the type of the value itself fieldDtype = type(sampleValue) # Append the key and data type to the dtype list dtype.append((key, fieldDtype)) # Convert the dictionary to a list of tuples keys = list(self.pxd.keys()) dataList = [tuple(self.pxd[key][i] for key in keys) for i in range(len(self.pxd[keys[0]]))] # Create the structured array structuredArray = np.array(dataList, dtype=dtype) return structuredArray def asDict(self) -> dict: return {'pxd': self.pxd.data} def asDataFrame(self, popMatrices: bool = False): if _pandas: if self.gotMatrices and not popMatrices: raise TypeError('pandas does not handle 2D matrices') if popMatrices: self.pxd.pop('cluster') return pd.DataFrame(self.pxd.data) else: raise ImportError('pandas is not installed on this system')