Newer
Older
import numpy as np
from numpy.typing import ArrayLike
import uproot as ur
from typing import Any, Iterable
from .detectors import PXD
from .common import FancyDict
try:
import pandas as pd
_pandas = True
except ImportError:
_pandas = False
class Rootable:
"""
this class uses uproot to load pxd data from root files and converts them into
native python data structures.
it can load the cluster information, uses the digits to generate the adc matrices,
coordinates, layer and ladders and finally also monte carlo data.
"""

johannes bilk
committed
# indices for events to be imported
self.eventIndices = None
# the root event tree
self.eventTree = None
# import flags
self.gotClusters = False
self.gotDigits = False
self.gotMatrices = False
self.gotCoordinates = False
self.gotMCData = False
self.gotFiltered = False
return self.pxd.where(*conditions)
@property
def data(self) -> dict:
return {'pxd': self.pxd.data}
def __iter__(self) -> Iterable:
return len(self.pxd.data)
def __getitem__(self, index: str | int | ArrayLike) -> FancyDict:
"""
this makes the class subscriptable, one can retrieve one coloumn by using
strings as keywords, or get a row by using integer indices or arrays
"""
if isinstance(index, str):
return self.data['pxd'][index]
return FancyDict({key: value[index] for key, value in self.data['pxd'].items()})
return len(np.unique(self.pxd['eventNumber']))
return len(self.pxd['clsCharge'])
return np.unique(self.pxd['pdg'])
def keys(self) -> dict:
return {'pxd': self.pxd.keys()}
def items(self) -> dict:
return {'pxd': self.pxd.items()}
def values(self) -> dict:
return {'pxd': self.pxd.values()}
def get(self, key: str) -> np.ndarray:
def pop(self, key: str) -> None:
def stack(self, *columns, toKey: str, pop: bool = True) -> None:
self.pxd.stack(*columns, toKey=toKey)
def loadData(self, fileName: str, includeUnSelected: bool = False) -> None:

johannes bilk
committed
Reads the file off of the hard drive; it automatically creates event numbers.
file: str = it's the whole file path + .root ending
"""
file, _, treeName = fileName.partition(':')
self.includeUnSelected = includeUnSelected
if not file.endswith('.root'):
file += '.root'
if not treeName:
treeName = 'tree'
try: # checking if file exists
with open(file, 'r') as f:
self.eventTree = ur.open(f'{file}:{treeName}')
except FileNotFoundError:
raise FileNotFoundError(f"File {file} not found.")
def getClusters(self) -> None:
self.gotClusters = True
self.pxd.getClusters(self.eventTree, self.includeUnSelected)
def getDigits(self) -> None:
self.gotDigits = True
self.pxd.getDigits(self.eventTree)
def getMatrices(self, matrixSize: tuple = (9, 9)) -> None:
self.gotMatrices = True
self.pxd.getMatrices(self.eventTree, matrixSize=matrixSize)
def getCoordinates(self) -> None:

johannes bilk
committed
self.gotCoordinates = True
self.pxd.getCoordinates(self.eventTree)

johannes bilk
committed
def getSphericals(self) -> None:

johannes bilk
committed
self.pxd.getLayers(self.eventTree)
self.gotMCData = True
self.pxd.getMCData(self.eventTree)
def getFiltered(self) -> None:
self.gotFiltered = True
self.pxd.getFiltered(self.eventTree)
def asStructuredArray(self) -> np.ndarray:
"""
this converts the data dict of this class into a structured numpy array
"""
# Create a list to hold the dtype specifications
dtype = []
# Iterate through the dictionary keys and values
for key, value in self.pxd.items():
# Determine the data type of the first value in the list
sampleValue = value[0]
if isinstance(sampleValue, np.ndarray):
# If the value is an array, use its shape and dtype
shapes = [val.shape for val in value]
if not all(shape == shapes[0] for shape in shapes):
fieldDtype = object
else:
fieldDtype = (sampleValue.dtype, sampleValue.shape)
else:
# Otherwise, use the type of the value itself
fieldDtype = type(sampleValue)
# Append the key and data type to the dtype list
dtype.append((key, fieldDtype))
# Convert the dictionary to a list of tuples
keys = list(self.pxd.keys())
dataList = [tuple(self.pxd[key][i] for key in keys) for i in range(len(self.pxd[keys[0]]))]
# Create the structured array
structuredArray = np.array(dataList, dtype=dtype)
def asDict(self) -> dict:
return {'pxd': self.pxd.data}
def asDataFrame(self, popMatrices: bool = False):
if _pandas:
if self.gotMatrices and not popMatrices:
raise TypeError('pandas does not handle 2D matrices')
if popMatrices:
self.pxd.pop('cluster')
return pd.DataFrame(self.pxd.data)
else:
raise ImportError('pandas is not installed on this system')