Skip to content
Snippets Groups Projects
rootable.py 25.1 KiB
Newer Older
import numpy as np
from numpy.typing import ArrayLike
import uproot as ur
johannes bilk's avatar
johannes bilk committed
from concurrent.futures import ThreadPoolExecutor


class Rootable:
    """
    this class uses uproot to load pxd data from root files and converts them into
    native python data structures.
    it can load the cluster information, uses the digits to generate the adc matrices,
    coordinates, layer and ladders and finally also monte carlo data.
    """
johannes bilk's avatar
johannes bilk committed
    def __init__(self, data: dict = None) -> None:
        # these are the sensor IDs of the pxd modules/panels from the root file, they are
        # use to identify on which panels a cluster event happened
        self.panelIDs = np.array([ 8480,  8512,  8736,  8768,  8992,  9024,  9248,  9280,
                              9504,  9536,  9760,  9792, 10016, 10048, 10272, 10304,
                             16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
                             17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
                             18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])

        # every line in this corresponds to one entry in the array above, this is used
        # to put the projected uv plane in the right position
        self.panelShifts = np.array([[1.3985    ,  0.2652658 ,  3.68255],
                               [ 1.3985    ,  0.23238491, -0.88255],
                               [ 0.80146531,  1.17631236,  3.68255],
                               [ 0.82407264,  1.15370502, -0.88255],
                               [-0.2582769 ,  1.3985    ,  3.68255],
                               [-0.2322286 ,  1.3985    , -0.88255],
                               [-1.17531186,  0.80246583, 3.68255 ],
                               [-1.15510614,  0.82267151, -0.88255],
                               [-1.3985    , -0.2645974 ,  3.68255],
                               [-1.3985    , -0.23012119, -0.88255],
                               [-0.80591227, -1.17186534,  3.68255],
                               [-0.82344228, -1.15433536, -0.88255],
                               [ 0.26975836, -1.3985    ,  3.68255],
                               [ 0.23326624, -1.3985    , -0.88255],
                               [ 1.1746111 , -0.80316652,  3.68255],
                               [ 1.15205703, -0.82572062, -0.88255],
                               [ 2.2015    ,  0.26959865,  5.01305],
                               [ 2.2015    ,  0.2524582 , -1.21305],
                               [ 1.77559093,  1.32758398,  5.01305],
                               [ 1.78212569,  1.31626522, -1.21305],
                               [ 0.87798948,  2.03516717,  5.01305],
                               [ 0.88478563,  2.03124357, -1.21305],
                               [-0.26129975,  2.2015    ,  5.01305],
                               [-0.25184137,  2.2015    , -1.21305],
                               [-1.32416655,  1.77756402,  5.01305],
                               [-1.31417539,  1.78333226, -1.21305],
                               [-2.03421133,  0.87964512,  5.01305],
                               [-2.02960691,  0.88762038, -1.21305],
                               [-2.2015    , -0.25954151,  5.01305],
                               [-2.2015    , -0.24969109, -1.21305],
                               [-1.77636043, -1.32625112,  5.01305],
                               [-1.78138268, -1.31755219, -1.21305],
                               [-0.87493138, -2.03693277, 5.01305 ],
                               [-0.8912978 , -2.02748378, -1.21305],
                               [ 0.26489725, -2.2015    ,  5.01305],
                               [ 0.25364439, -2.2015    , -1.21305],
                               [ 1.3269198 , -1.7759744 ,  5.01305],
                               [ 1.32258793, -1.77847528, -1.21305],
                               [ 2.03616649, -0.87625871,  5.01305],
                               [ 2.02936825, -0.8880338 , -1.21305]])

        # every entry here corresponds to the entries in the array above, these are
        # used for rotating the projected uv plane
        self.panelRotations = np.array([ 90,  90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360,
                                   360, 405, 405,  90,  90, 120, 120, 150, 150, 180, 180, 210, 210,
                                   240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420,
                                   420])

        # the layer and ladder arrays, for finding them from sensor id
        self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
        self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21])

        # all transpormaations are stored in a dict, with the sensor id as a keyword
        self.transformation = {}
        self.layersLadders = {}
        for i in range(len(self.panelIDs)):
            self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]]
            self.layersLadders[str(self.panelIDs[i])] = [self.panelLayer[i], self.panelLadder[i]]

        # these are the branch names for cluster info in the root file
        self.gotClusters = False
        self.clusters = ['PXDClusters/PXDClusters.m_clsCharge',
                         'PXDClusters/PXDClusters.m_seedCharge',
                         'PXDClusters/PXDClusters.m_clsSize',
                         'PXDClusters/PXDClusters.m_uSize',
                         'PXDClusters/PXDClusters.m_vSize',
                         'PXDClusters/PXDClusters.m_uPosition',
                         'PXDClusters/PXDClusters.m_vPosition',
                         'PXDClusters/PXDClusters.m_sensorID']

        # these are the branch names for cluster digits in the root file
        self.digits = ['PXDDigits/PXDDigits.m_uCellID',
                       'PXDDigits/PXDDigits.m_vCellID',
                       'PXDDigits/PXDDigits.m_charge']

        # this establishes the relationship between clusters and digits
        # because for some reaseon the branch for digits has a different
        # size than the cluster branch
        self.clusterToDigis = 'PXDClustersToPXDDigits/m_elements/m_elements.m_to'

        # these are the branch names for monte carlo data in the root file
        self.mcData = ['MCParticles/MCParticles.m_pdg',
                       'MCParticles/MCParticles.m_momentum_x',
                       'MCParticles/MCParticles.m_momentum_y',
                       'MCParticles/MCParticles.m_momentum_z']

        # these two establish the relation ship to an from clusters and monte carlo
        # there more entries than in the cluster data, but there still mc data missing
        # for some cluster files
        self.clusterToMC = 'PXDClustersToMCParticles/m_elements/m_elements.m_to'
        self.mcToCluster = 'PXDClustersToMCParticles/m_elements/m_elements.m_from'

        # this dict stores the data
johannes bilk's avatar
johannes bilk committed
        self.data = data if data is not None else {}

        # list of pxd panels
        self.pxdPanels = [[[-0.89 ,  0.36 ,  0.36 , -0.89 , -0.89 ], [ 1.4  ,  1.4  ,  1.4  ,  1.4  ,  1.4  ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 00
                          [[ 1.25 ,  0.365,  0.365,  1.25 ,  1.25 ], [ 0.72 ,  1.615,  1.615,  0.72 ,  0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 01
                          [[ 1.4  ,   1.4 ,  1.4  ,  1.4  ,  1.4  ], [-0.36 ,  0.89 ,  0.89 , -0.36 , -0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 02
                          [[ 0.72 ,  1.615,  1.615,  0.72 ,  0.72 ], [-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 03
                          [[ 0.89 , -0.36 , -0.36 ,  0.89 ,  0.89 ], [-1.4  , -1.4  , -1.4  , -1.4  , -1.4  ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 04
                          [[-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 05
                          [[-1.4  , -1.4  , -1.4  , -1.4  , -1.4  ], [ 0.36 , -0.89 , -0.89 ,  0.36 ,  0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 06
                          [[-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [ 1.25 ,  0.365,  0.365,  1.25 ,  1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]],      # 07
                          [[-0.89 ,  0.36 ,  0.36 , -0.89 , -0.89 ], [ 2.2  ,  2.2  ,  2.2  ,  2.2  ,  2.2  ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 08
                          [[ 0.345,  1.4  ,  1.4  ,  0.345,  0.345], [ 2.35 ,  1.725,  1.725,  2.35 ,  2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 09
                          [[ 1.48 ,  2.1  ,  2.1  ,  1.48 ,  1.48 ], [ 1.85 ,  0.78 ,  0.78 ,  1.85 ,  1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 10
                          [[ 2.2  ,  2.2  ,  2.2  ,  2.2  ,  2.2  ], [ 0.89 , -0.36 , -0.36 ,  0.89 ,  0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 11
                          [[ 2.35 ,  1.725,  1.725,  2.35 ,  2.35 ], [-0.345, -1.4  , -1.4  , -0.345, -0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 12
                          [[ 1.85 ,  0.78 ,  0.78 ,  1.85 ,  1.85 ], [-1.48 , -2.1  , -2.1  , -1.48 , -1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 13
                          [[ 0.89 , -0.36 , -0.36 ,  0.89 ,  0.89 ], [-2.2  , -2.2  , -2.2  , -2.2  , -2.2  ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 14
                          [[-0.345, -1.4  , -1.4  , -0.345, -0.345], [-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 15
                          [[-1.48 , -2.1  , -2.1  , -1.48 , -1.48 ], [-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 16
                          [[-2.2  , -2.2  , -2.2  , -2.2  , -2.2  ], [-0.89 ,  0.36 ,  0.36 , -0.89 , -0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 17
                          [[-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [ 0.345,  1.4  ,  1.4  ,  0.345,  0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]],      # 18
                          [[-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [ 1.48 ,  2.1  ,  2.1  ,  1.48 ,  1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]]]      # 19


    def __getitem__(self, index: str | int | ArrayLike) -> np.ndarray | dict:
        """
        this makes the class subscriptable, one can retrieve one coloumn by using
        strings as keywords, or get a row by using integer indices or arrays
        """
        if isinstance(index, str):
            return self.data[index]
        return {key: value[index] for key, value in self.data.items()}

johannes bilk's avatar
johannes bilk committed
    def where(self, *conditions: str) -> dict:
        """
        Filters the data based on the provided conditions.
        :param conditions: List of conditions as strings for filtering. The keys should be the names of the data fields, and the conditions should be in a format that can be split into key, operator, and value.
        :return: Instance of the class containing the filtered data.
johannes bilk's avatar
johannes bilk committed
        """
        filteredData = self.data.copy()
        mask = np.ones(len(next(iter(self.data.values()))), dtype=bool)  # Initial mask allowing all elements
johannes bilk's avatar
johannes bilk committed

        # Applying the conditions to create the mask
        for condition in conditions:
            key, op, value = condition.split(None, 2)  # Split by the first two spaces only
            if op == 'in':
                value = eval(value)
                mask &= np.isin(self.data[key], value)
            else:
                comparisionValue = float(value)
                fieldValues = self.data[key].astype(float)

                # Determine the correct comparison to apply
                operation = {
                    '==': np.equal,
                    '<': np.less,
                    '>': np.greater,
                    '<=': np.less_equal,
                    '>=': np.greater_equal,
                }.get(op)

                if operation is None:
                    raise ValueError(f"Invalid operator {op}")

                mask &= operation(fieldValues, comparisionValue)
johannes bilk's avatar
johannes bilk committed

        # Applying the mask to filter the data
        for key, values in filteredData.items():
            filteredData[key] = values[mask]

        return self.__class__(data=filteredData)

    def __repr__(self) -> str:
        return str(self.data)

    def loadData(self, file: str) -> None:
        """
        reads the file off of the harddrive, it automatically creates event numbers
        file: str = it's the whole file path + .root ending
        """
        self.eventTree = ur.open(f'{file}:tree')
johannes bilk's avatar
johannes bilk committed
        self._getEventNumbers()
johannes bilk's avatar
johannes bilk committed
    def _getEventNumbers(self) -> None:
        """
        a private method that gets called on file import
        it generates the event numbers from the jagged arrays
        coming from the branches
        """
        eventNumbers = []
        clusters = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
        for i in range(len(clusters)):
            eventNumbers.append(np.array([i]*len(clusters[i])))
        self.data['eventNumbers'] = self._flatten(eventNumbers)

    def _getData(self, keyword: str, library: str = 'np') -> np.ndarray:
        """
        a private method for converting branches into something useful, namely
        into numpy arrays, if the keyward library is set to np.
        keyword: str = the full branch name
        library: str = can be 'np' (numpy), 'pd' (pandas) or 'ak' (akward)
                       see uproot documentation for more info
        """
        try:
            data = self.eventTree.arrays(keyword, library=library)[keyword]
            return self._flatten(data)
        except:
            return KeyError

    def _flatten(self, structure: ArrayLike, maxDepth: int = None, currentDepth: int = 0) -> np.ndarray:
        """
        this is a private function, that gets called during loading branches
        it flattens ragged array, one can set the depths to which one wants to flatten
        structure: the list/array to flatten
        maxDepth: int = the amount of flattening
        currentDepth: int = don't touch this, it's used for recursively calling
        """
        flat_list = []

        for element in structure:
            if isinstance(element, (list, np.ndarray)) and (maxDepth is None or currentDepth < maxDepth):
                flat_list.extend(self._flatten(element, maxDepth, currentDepth + 1))
            else:
                flat_list.append(element)

        return np.array(flat_list, dtype=object)

    def getClusters(self) -> None:
        """
        this uses the array from __init__ to load different branches into the data dict
        """
        self.gotClusters = True
        for branch in self.clusters:
            data = self._getData(branch)
            keyword = branch.split('_')[-1]
            self.data[keyword] = data

johannes bilk's avatar
johannes bilk committed
    def getMatrices(self, matrixSize: tuple = (9, 9)) -> None:
        """
        loads the digit branches into arrays and converts them into adc matrices
        """
        uCellIDs = self.eventTree.arrays(self.digits[0], library='np')[self.digits[0]]
        vCellIDs = self.eventTree.arrays(self.digits[1], library='np')[self.digits[1]]
        cellCharges = self.eventTree.arrays(self.digits[2], library='np')[self.digits[2]]

        # this establishes the relation between digits and clusters, it's still
        # shocking to me, that this is necessary, why aren't digits stored in the
        # same way as clusters, than one wouldn't need to jump through hoops just
        # to have the data in a usable und sensible manner
        # root is such a retarded file format
        clusterDigits = self.eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis]

johannes bilk's avatar
johannes bilk committed
        indexChunnks = np.array_split(range(len(cellCharges)), 4)
johannes bilk's avatar
johannes bilk committed
        with ThreadPoolExecutor(max_workers=None) as executor:
            futures = [executor.submit(self._getMatrices, chunk, uCellIDs, vCellIDs, cellCharges, clusterDigits, matrixSize) for chunk in indexChunnks]
            results = [future.result() for future in futures]

        # Combine the results from all chunks
        self.data['cluster'] = np.concatenate(results).astype('int')

    def _getMatrices(self, indexChunks: ArrayLike, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, clusterDigits: ArrayLike, matrixSize: tuple = (9, 9)) -> np.ndarray:
        """
        this takes the ragged/jagged digit arrays and converts them into 9x9 matrices
        it's a rather slow process because of all the looping
        """
        plotRange = np.array(matrixSize) // 2
        events = []

johannes bilk's avatar
johannes bilk committed
        for event in indexChunks:
            digitsU, digitsV, digitsCharge = np.array(uCellIDs[event]), np.array(vCellIDs[event]), np.array(cellCharges[event])
            digitIndices = clusterDigits[event]
johannes bilk's avatar
johannes bilk committed
            adcValues = []

            for indices in digitIndices:
                cacheImg = np.zeros(matrixSize)
                maxChargeIndex = digitsCharge[indices].argmax()
                uMax, vMax = digitsU[indices[maxChargeIndex]], digitsV[indices[maxChargeIndex]]
                uPos, vPos = digitsU[indices] - uMax + plotRange[0], digitsV[indices] - vMax + plotRange[1]

                valid_indices = (uPos >= 0) & (uPos < matrixSize[0]) & (vPos >= 0) & (vPos < matrixSize[1])
                cacheImg[uPos[valid_indices].astype(int), vPos[valid_indices].astype(int)] = digitsCharge[indices][valid_indices]
                adcValues.append(cacheImg)

            events.extend(adcValues)

        return np.array(events, dtype=object)

johannes bilk's avatar
johannes bilk committed
    def getCoordisnates(self) -> None:
        """
        converting the uv coordinates, together with sensor ids, into xyz coordinates
        """
        if self.gotClusters is False:
            self.getClusters()
johannes bilk's avatar
johannes bilk committed

        indexChunnks = np.array_split(range(len(self.data['sensorID'])), 4)

        with ThreadPoolExecutor(max_workers=None) as executor:
            futures = [executor.submit(self._getCoordisnates, self.data['uPosition'][chunk], self.data['vPosition'][chunk], self.data['sensorID'][chunk]) for chunk in indexChunnks]

            xResults, yResults, zResults = [], [], []
            for future in futures:
                x, y, z = future.result()
                xResults.append(x)
                yResults.append(y)
                zResults.append(z)

            self.data['xPosition'] = np.concatenate(xResults)
            self.data['yPosition'] = np.concatenate(yResults)
            self.data['zPosition'] = np.concatenate(zResults)
johannes bilk's avatar
johannes bilk committed
    def _getCoordisnates(self, uPositions: ArrayLike, vPositions: ArrayLike, sensorIDs: ArrayLike) -> tuple[np.ndarray]:
        """
        a private method for transposing/converting 2d uv coords into 3d xyz coordinates
        """
        length = len(sensorIDs)
        xArr, yArr, zArr = np.zeros(length), np.zeros(length), np.zeros(length)

        # iterting over the cluster arrays
        for index, (u, v, sensor_id) in enumerate(zip(uPositions, vPositions, sensorIDs)):
            # grabbing the shift vector and rotation angle
            shift, angle = self.transformation[str(sensor_id)]

            # setting up rotation matrix
            theta = np.deg2rad(angle)
            rotMatrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])

            # projecting uv coordinates into 3d space
            point = np.array([u, 0, v])

            # shifting and rotating the projected vector
            shifted = rotMatrix.dot(point) + shift
            xArr[index], yArr[index], zArr[index] = shifted

        return xArr, yArr, zArr

    def getLayers(self) -> None:
        """
        looks up the corresponding layers and ladders for every cluster
        """
        if self.gotClusters is False:
            self.getClusters()
        layers, ladders = [], []
        for id in self.data['sensorID']:
            layer, ladder = self.layersLadders[str(id)]
            layers.append(layer)
            ladders.append(ladder)
        self.data['layers'] = np.array(layers)
        self.data['ladder'] = np.array(ladders)

    def getMCData(self) -> None:
        """
        this loads the monte carlo from the root file
        """

        # the monte carlo data, they are longer than the cluster data
        pdg = self.eventTree.arrays(self.mcData[0], library='np')[self.mcData[0]]
        momentumX = self.eventTree.arrays(self.mcData[1], library='np')[self.mcData[1]]
        momentumY = self.eventTree.arrays(self.mcData[2], library='np')[self.mcData[2]]
        momentumZ = self.eventTree.arrays(self.mcData[3], library='np')[self.mcData[3]]

        # this loads the relation ships to and from clusters and mc data
        # this is the same level of retardedness as with the cluster digits
        clusterToMC = self.eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC]
        mcToCluster = self.eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster]

        # it need the cluster charge as a jagged/ragged array, maybe I could simply
        # use the event numbers, but I am too tired to fix this shitty file format
        clsCharge = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']

        # reorganizing MC data
        momentumXList = []
        momentumYList = []
        momentumZList = []
        pdgList = []
        clusterNumbersList = []
        for i in range(len(clusterToMC)):
            # _fillMCList fills in the missing spots, because there are not mc data for
            # every cluster, even though there are more entries in this branch than
            # in the cluster branch... as I said, the root format is retarded
            fullClusterReferences = self._fillMCList(mcToCluster[i], clusterToMC[i], len(clsCharge[i]))
            clusterNumbersList.append(fullClusterReferences)
            pdgs, xmom, ymom, zmom = self._getMCData(fullClusterReferences, pdg[i], momentumX[i], momentumY[i], momentumZ[i])
            momentumXList.append(xmom)
            momentumYList.append(ymom)
            momentumZList.append(zmom)
            pdgList.append(pdgs)

        self.data['momentumX'] = self._flatten(momentumXList)
        self.data['momentumY'] = self._flatten(momentumYList)
        self.data['momentumZ'] = self._flatten(momentumZList)
        self.data['pdg'] = self._flatten(pdgList)
        self.data['clsNumber'] = self._flatten(clusterNumbersList)

    def _findMissing(self, lst: list, length: int) -> list:
        """
        a private method for finding missing elements in mc data arrays
        """
        return sorted(set(range(0, length)) - set(lst))

    def _fillMCList(self, fromClusters: ArrayLike, toClusters: ArrayLike, length: ArrayLike) -> list:
        """
        a private method for filling MC data arrays where clusters don't have
        any information
        """
        missingIndex = self._findMissing(fromClusters, length)
        testList = [-1] * length
        fillIndex = 0
        for i in range(len(testList)):
            if i in missingIndex:
                testList[i] = -1
            else:
                try:
                    testList[i] = int(toClusters[fillIndex])
                except TypeError:
                    testList[i] = int(toClusters[fillIndex][0])
                fillIndex += 1
        return testList

    def _getMCData(self, toClusters: ArrayLike, pdgs: ArrayLike, xMom: ArrayLike, yMom: ArrayLike, zMom: ArrayLike) -> tuple[np.ndarray]:
        """
        after filling and reorganizing MC data arrays one can finally collect the
        actual MC data, where there's data missing I will with zeros
        """
        pxList, pyList, pzList = [], [], []
        pdgList = []
        for references in toClusters:
            if references == -1:
                pxList.append(0)
                pyList.append(0)
                pzList.append(0)
                pdgList.append(0)
            else:
                pxList.append(xMom[references])
                pyList.append(yMom[references])
                pzList.append(zMom[references])
                pdgList.append(pdgs[references])
        return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list)

    def getStructuredArray(self) -> np.ndarray:
        """
        this converts the data dict of this class into a structured numpy array
        """
        # Create a list to hold the dtype specifications
        dtype = []

        # Iterate through the dictionary keys and values
        for key, value in self.data.items():
            # Determine the data type of the first value in the list
            sampleValue = value[0]

            if isinstance(sampleValue, np.ndarray):
                # If the value is an array, use its shape and dtype
                fieldDtype = (sampleValue.dtype, sampleValue.shape)
            else:
                # Otherwise, use the type of the value itself
                fieldDtype = type(sampleValue)

            # Append the key and data type to the dtype list
            dtype.append((key, fieldDtype))

        # Convert the dictionary to a list of tuples
        keys = list(self.data.keys())
        dataList = [tuple(self.data[key][i] for key in keys) for i in range(len(self.data[keys[0]]))]

        # Create the structured array
        structuredArray = np.array(dataList, dtype=dtype)

        return structuredArray