Newer
Older
import numpy as np
from numpy.typing import ArrayLike
from uproot import TTree
from ..common import FancyDict
from concurrent.futures import ProcessPoolExecutor
from .pxdFilter import FindUnselectedClusters
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class PXD(FancyDict):
def __init__(self, data: dict = None) -> None:
self.name = 'pxd'
# list of pxd panels
self.panels = [[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 00
[[ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 01
[[ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-0.36 , 0.89 , 0.89 , -0.36 , -0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 02
[[ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 03
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 04
[[-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 05
[[-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [ 0.36 , -0.89 , -0.89 , 0.36 , 0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 06
[[-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 07
[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 08
[[ 0.345, 1.4 , 1.4 , 0.345, 0.345], [ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 09
[[ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 10
[[ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 11
[[ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-0.345, -1.4 , -1.4 , -0.345, -0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 12
[[ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 13
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 14
[[-0.345, -1.4 , -1.4 , -0.345, -0.345], [-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 15
[[-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 16
[[-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 17
[[-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [ 0.345, 1.4 , 1.4 , 0.345, 0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 18
[[-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]]] # 19
# these are the branch names for cluster info in the root file
self.clusters = ['PXDClusters/PXDClusters.m_clsCharge',
'PXDClusters/PXDClusters.m_seedCharge',
'PXDClusters/PXDClusters.m_clsSize',
'PXDClusters/PXDClusters.m_uSize',
'PXDClusters/PXDClusters.m_vSize',
'PXDClusters/PXDClusters.m_uPosition',
'PXDClusters/PXDClusters.m_vPosition',
'PXDClusters/PXDClusters.m_sensorID']
# these are the branch names for cluster digits in the root file
self.digits = ['PXDDigits/PXDDigits.m_uCellID',
'PXDDigits/PXDDigits.m_vCellID',
'PXDDigits/PXDDigits.m_charge']
# this establishes the relationship between clusters and digits
# because for some reaseon the branch for digits has a different
# size than the cluster branch
self.clusterToDigis = 'PXDClustersToPXDDigits/m_elements/m_elements.m_to'
# these are the branch names for monte carlo data in the root file
self.mcData = ['MCParticles/MCParticles.m_pdg',
'MCParticles/MCParticles.m_momentum_x',
'MCParticles/MCParticles.m_momentum_y',
'MCParticles/MCParticles.m_momentum_z']
# these two establish the relation ship to an from clusters and monte carlo
# there more entries than in the cluster data, but there still mc data missing
# for some cluster files
self.clusterToMC = 'PXDClustersToMCParticles/m_elements/m_elements.m_to'
self.mcToCluster = 'PXDClustersToMCParticles/m_elements/m_elements.m_from'
# these are the sensor IDs of the pxd modules/panels from the root file, they are
# use to identify on which panels a cluster event happened
self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280,
9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304,
16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])
# every line in this corresponds to one entry in the array above, this is used
# to put the projected uv plane in the right position
self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255],
[ 1.3985 , 0.23238491, -0.88255],
[ 0.80146531, 1.17631236, 3.68255],
[ 0.82407264, 1.15370502, -0.88255],
[-0.2582769 , 1.3985 , 3.68255],
[-0.2322286 , 1.3985 , -0.88255],
[-1.17531186, 0.80246583, 3.68255 ],
[-1.15510614, 0.82267151, -0.88255],
[-1.3985 , -0.2645974 , 3.68255],
[-1.3985 , -0.23012119, -0.88255],
[-0.80591227, -1.17186534, 3.68255],
[-0.82344228, -1.15433536, -0.88255],
[ 0.26975836, -1.3985 , 3.68255],
[ 0.23326624, -1.3985 , -0.88255],
[ 1.1746111 , -0.80316652, 3.68255],
[ 1.15205703, -0.82572062, -0.88255],
[ 2.2015 , 0.26959865, 5.01305],
[ 2.2015 , 0.2524582 , -1.21305],
[ 1.77559093, 1.32758398, 5.01305],
[ 1.78212569, 1.31626522, -1.21305],
[ 0.87798948, 2.03516717, 5.01305],
[ 0.88478563, 2.03124357, -1.21305],
[-0.26129975, 2.2015 , 5.01305],
[-0.25184137, 2.2015 , -1.21305],
[-1.32416655, 1.77756402, 5.01305],
[-1.31417539, 1.78333226, -1.21305],
[-2.03421133, 0.87964512, 5.01305],
[-2.02960691, 0.88762038, -1.21305],
[-2.2015 , -0.25954151, 5.01305],
[-2.2015 , -0.24969109, -1.21305],
[-1.77636043, -1.32625112, 5.01305],
[-1.78138268, -1.31755219, -1.21305],
[-0.87493138, -2.03693277, 5.01305 ],
[-0.8912978 , -2.02748378, -1.21305],
[ 0.26489725, -2.2015 , 5.01305],
[ 0.25364439, -2.2015 , -1.21305],
[ 1.3269198 , -1.7759744 , 5.01305],
[ 1.32258793, -1.77847528, -1.21305],
[ 2.03616649, -0.87625871, 5.01305],
[ 2.02936825, -0.8880338 , -1.21305]])
# every entry here corresponds to the entries in the array above, these are
# used for rotating the projected uv plane
self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360,
360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210,
240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420,
420])
# the layer and ladder arrays, for finding them from sensor id
self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21])
# all transpormaations are stored in a dict, with the sensor id as a keyword
self.transformation = {}
self.layersLadders = {}
for i in range(len(self.panelIDs)):
self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]]
self.layersLadders[str(self.panelIDs[i])] = [self.panelLayer[i], self.panelLadder[i]]
# parameter for checking if coordinates have been loaded
self.gotClusters = False
self.gotCoordinates = False
self.gotSphericals = False
self.gotLayers = False
self.gotDigits = False
self.gotMatrices = False
self.gotMCData = False
self.gotFiltered = False
# this dict stores the data
self.data = data if data is not None else {}
# inorder to find roi unselected clusters
self.findUnselectedClusters = FindUnselectedClusters()
def getClusters(self, eventTree: TTree, fileName: str = None) -> None:
"""
this uses the array from __init__ to load different branches into the data dict
"""
self.gotClusters = True
for branch in self.clusters:
data = self._getData(eventTree, branch)
keyword = branch.split('_')[-1]
self.set(keyword, data)
#self.data[keyword] = data
self.set('roiSelected', np.array([True] * len(data)))
self.set('fileName', np.array([fileName] * len(data)))
self.set('detector', np.array(['pxd'] * len(data)))
clusters = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
self._getEventNumbers(clusters)
if self.includeUnSelected:
unselectedClusters = self.findUnselectedClusters.getClusters(eventTree, fileName)
self.extend(unselectedClusters)
def _getEventNumbers(self, clusters: np.ndarray, offset: int = 0) -> None:
"""
this generates event numbers from the structure of pxd clusters
"""
eventNumbers = []
for i in range(len(clusters)):
eventNumbers.append(np.array([i]*len(clusters[i])) + offset)
self.set('eventNumber', np.concatenate(eventNumbers))
def _getData(self, eventTree: TTree, keyword: str, library: str = 'np') -> np.ndarray:
"""
a private method for converting branches into something useful, namely
into numpy arrays, if the keyward library is set to np.
keyword: str = the full branch name
library: str = can be 'np' (numpy), 'pd' (pandas) or 'ak' (akward)
see uproot documentation for more info
"""
try:
data = eventTree.arrays(keyword, library=library)[keyword]
return np.hstack(data)
except:
return KeyError
def getDigits(self, eventTree: TTree) -> None:
"""
reorganizes digits, so that they fit to the clusters
"""
digits = eventTree.arrays(self.digits, library='np')
uCellIDs = digits[self.digits[0]]
vCellIDs = digits[self.digits[1]]
cellCharges = digits[self.digits[2]]
# this establishes the relation between digits and clusters, it's still
# shocking to me, that this is necessary, why aren't digits stored in the
# same way as clusters, than one wouldn't need to jump through hoops just
# to have the data in a usable und sensible manner
# root is such a retarded file format
clusterDigits = eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis]
uCellIDsTemp = []
vCellIDsTemp = []
cellChargesTemp = []
for event in range(len(clusterDigits)):
for cls in clusterDigits[event]:
uCellIDsTemp.append(uCellIDs[event][cls])
vCellIDsTemp.append(vCellIDs[event][cls])
cellChargesTemp.append(cellCharges[event][cls])
self.set('uCellIDs', np.array(uCellIDsTemp, dtype=object))
self.set('vCellIDs', np.array(vCellIDsTemp, dtype=object))
self.set('cellCharges', np.array(cellChargesTemp, dtype=object))
unselectedClusters = self.findUnselectedClusters.getDigits(eventTree)
self.extend(unselectedClusters)
self.gotDigits = True
def getMatrices(self, eventTree: TTree, matrixSize: tuple = (9, 9)) -> None:
"""
Loads the digit branches into arrays and converts them into adc matrices
"""
popDigits = False
if self.gotDigits is False:
self.getDigits(eventTree)
popDigits = True
uCellIDs = self.data['uCellIDs']
vCellIDs = self.data['vCellIDs']
cellCharges = self.data['cellCharges']
indexChunks = np.array_split(range(len(cellCharges)), 4)
with ProcessPoolExecutor(max_workers=4) as executor: # Automatically uses as many workers as there are CPUs
futures = [executor.submit(self._getMatrices, chunk, uCellIDs, vCellIDs, cellCharges, matrixSize) for chunk in indexChunks]
results = [future.result() for future in futures]
# Combine the results from all chunks
self.set('matrix', np.concatenate(results).astype('int'))
if popDigits is True:
self.data.pop('uCellIDs')
self.data.pop('vCellIDs')
self.data.pop('cellCharges')
self.gotDigits = False
self.gotMatrices = True
@staticmethod
def _getMatrices(indexChunks: ArrayLike, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, matrixSize: tuple = (9, 9)) -> np.ndarray:
"""
this takes the ragged/jagged digit arrays and converts them into 9x9 matrices
it's a rather slow process because of all the looping
"""
plotRange = np.array(matrixSize) // 2
numEvents = len(indexChunks)
events = np.zeros((numEvents, *matrixSize), dtype=cellCharges.dtype)
for i, event in enumerate(indexChunks):
# Since uCellIDs, vCellIDs, and cellCharges are now directly associated with clusters,
digitsU, digitsV, digitsCharge = np.array(uCellIDs[event]), np.array(vCellIDs[event]), np.array(cellCharges[event])
# Find the center of the cluster (digit with the max charge)
uMax, vMax = digitsU[digitsCharge.argmax()], digitsV[digitsCharge.argmax()]
uPos, vPos = digitsU - uMax + plotRange[0], digitsV - vMax + plotRange[1]
valid_indices = (uPos >= 0) & (uPos < matrixSize[0]) & (vPos >= 0) & (vPos < matrixSize[1])
# In-place operation to populate the matrix for the current event
events[i, uPos[valid_indices].astype(int), vPos[valid_indices].astype(int)] = digitsCharge[valid_indices]
return np.array(events, dtype=object)
def getCoordinates(self, eventTree: TTree) -> None:
"""
converting the uv coordinates, together with sensor ids, into xyz coordinates
"""
# checking if cluster parameters have been loaded
if self.gotClusters is False:
self.getClusters(eventTree)
#setting up index chunks for multi threading
indexChunnks = np.array_split(range(len(self.data['sensorID'])), 4)
# Initialize result lists
xResults, yResults, zResults = [], [], []
with ProcessPoolExecutor(max_workers=4) as executor:
futures = [executor.submit(self._getCoordinates, self.data['uPosition'][chunk], self.data['vPosition'][chunk], self.data['sensorID'][chunk]) for chunk in indexChunnks]
for future in futures:
x, y, z = future.result()
xResults.append(x)
yResults.append(y)
zResults.append(z)
self.set('xPosition', np.concatenate(xResults))
self.set('yPosition', np.concatenate(yResults))
self.set('zPosition', np.concatenate(zResults))
# setting a bool for checking if coordinates were calculated
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
self.gotCoordinates = True
def _getCoordinates(self, uPositions: ArrayLike, vPositions: ArrayLike, sensorIDs: ArrayLike) -> tuple[np.ndarray]:
"""
a private method for transposing/converting 2d uv coords into 3d xyz coordinates
"""
length = len(sensorIDs)
xArr, yArr, zArr = np.zeros(length), np.zeros(length), np.zeros(length)
# iterting over the cluster arrays
for index, (u, v, sensor_id) in enumerate(zip(uPositions, vPositions, sensorIDs)):
# grabbing the shift vector and rotation angle
shift, angle = self.transformation[str(sensor_id)]
# setting up rotation matrix
theta = np.deg2rad(angle)
rotMatrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
# projecting uv coordinates into 3d space
point = np.array([u, 0, v])
# shifting and rotating the projected vector
shifted = rotMatrix.dot(point) + shift
xArr[index], yArr[index], zArr[index] = shifted
return xArr, yArr, zArr
def getSphericals(self, eventTree: TTree) -> None:
"""
Calculate spherical coordinates for each cluster.
"""
# Checking if coordinates have been loaded
popCoords = False
if self.gotCoordinates is False:
self.getCoordinates(eventTree)
popCoords = True
xPosition = self.data['xPosition']
yPosition = self.data['yPosition']
zPosition = self.data['zPosition']
r, theta, phi = self._calcSphericals(xPosition, yPosition, zPosition)
self.set('rPosition', r)
self.set('thetaPosition', theta)
self.set('phiPosition', phi)
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
self.gotSphericals = True
if popCoords:
self.data.pop('xPosition')
self.data.pop('yPosition')
self.data.pop('zPosition')
self.gotCoordinates = False
@staticmethod
def _calcSphericals(xPosition: np.ndarray, yPosition: np.ndarray, zPosition: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
xSquare = np.square(xPosition)
ySquare = np.square(yPosition)
zSquare = np.square(zPosition)
# Avoid division by zero by replacing zeros with a small number
r = np.sqrt(xSquare + ySquare + zSquare)
rSafe = np.where(r == 0, 1e-10, r)
theta = np.arccos(zPosition / rSafe)
phi = np.arctan2(yPosition, xPosition)
return r, theta, phi
def getLayers(self, eventTree: TTree) -> None:
"""
looks up the corresponding layers and ladders for every cluster
"""
if self.gotClusters is False:
self.getClusters(eventTree)
n = len(self.data['sensorID'])
layers = np.empty(n, dtype=int)
ladders = np.empty(n, dtype=int)
for i, id in enumerate(self.data['sensorID']):
layers[i], ladders[i] = self.layersLadders[str(id)]
self.set('layer', np.array(layers, dtype=int))
self.set('ladder', np.array(ladders, dtype=int))
self.gotLayers = True
def getMCData(self, eventTree: TTree) -> None:
"""
this loads the monte carlo from the root file
"""
if self.gotClusters is False:
self.getClusters(eventTree)
warnings.warn('mc data are not supported on roi unselected data')
# the monte carlo data, they are longer than the cluster data
mcData = eventTree.arrays(self.mcData, library='np')
pdg = mcData[self.mcData[0]]
momentumX = mcData[self.mcData[1]]
momentumY = mcData[self.mcData[2]]
momentumZ = mcData[self.mcData[3]]
# this loads the relation ships to and from clusters and mc data
# this is the same level of retardedness as with the cluster digits
clusterToMC = eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC]
mcToCluster = eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster]
# it need the cluster charge as a jagged/ragged array, maybe I could simply
# use the event numbers, but I am too tired to fix this shitty file format
clsCharge = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
# reorganizing MC data
n = len(clusterToMC)
momentumXList = np.zeros(n, dtype=object)
momentumYList = np.zeros(n, dtype=object)
momentumZList = np.zeros(n, dtype=object)
pdgList = np.zeros(n, dtype=object)
clusterNumbersList = np.zeros(n, dtype=object)
for i in range(n):
# _fillMCList fills in the missing spots, because there are not mc data for
# every cluster, even though there are more entries in this branch than
# in the cluster branch... as I said, the root format is retarded
fullClusterReferences = self._fillMCList(mcToCluster[i], clusterToMC[i], len(clsCharge[i]))
clusterNumbersList[i] = fullClusterReferences
pdgs, xmom, ymom, zmom = self._getMCData(fullClusterReferences, pdg[i], momentumX[i], momentumY[i], momentumZ[i])
momentumXList[i] = xmom
momentumYList[i] = ymom
momentumZList[i] = zmom
pdgList[i] = pdgs
self.set('momentumX', np.hstack(momentumXList).astype(float))
self.set('momentumY', np.hstack(momentumYList).astype(float))
self.set('momentumZ', np.hstack(momentumZList).astype(float))
self.set('pdg', np.hstack(pdgList).astype(int))
self.set('clsNumber', np.hstack(clusterNumbersList).astype(int))
if self.includeUnSelected:
sampleSize = np.sum(self.data['roiSelected'] == False)
missingMCData = self.findUnselectedClusters.fillMCData({
'momentumX': self.data['momentumX'],
'momentumY': self.data['momentumY'],
'momentumZ': self.data['momentumZ'],
'pdg': self.data['pdg'],
'clsNumber': self.data['clsNumber']
self.extend(missingMCData)
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
@staticmethod
def _findMissing(lst: list, length: int) -> list:
"""
a private method for finding missing elements in mc data arrays
"""
return sorted(set(range(0, length)) - set(lst))
def _fillMCList(self, fromClusters: ArrayLike, toClusters: ArrayLike, length: ArrayLike) -> list:
"""
a private method for filling MC data arrays where clusters don't have
any information
"""
missingIndex = self._findMissing(fromClusters, length)
testList = [-1] * length
fillIndex = 0
for i in range(len(testList)):
if i in missingIndex:
testList[i] = -1
else:
try:
testList[i] = int(toClusters[fillIndex])
except TypeError:
testList[i] = int(toClusters[fillIndex][0])
fillIndex += 1
return testList
@staticmethod
def _getMCData(toClusters: ArrayLike, pdgs: ArrayLike, xMom: ArrayLike, yMom: ArrayLike, zMom: ArrayLike) -> tuple[np.ndarray]:
"""
after filling and reorganizing MC data arrays one can finally collect the
actual MC data, where there's data missing I will with zeros
"""
n = len(toClusters)
pxList = np.zeros(n)
pyList = np.zeros(n)
pzList = np.zeros(n)
pdgList = np.zeros(n, dtype=int)
for i, references in enumerate(toClusters):
continue # Arrays were initialized to zero
pxList[i] = xMom[references]
pyList[i] = yMom[references]
pzList[i] = zMom[references]
pdgList[i] = pdgs[references]
return pdgList, pxList, pyList, pzList