Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
from numpy.typing import ArrayLike
from uproot import TTree
from ..common import FancyDict
from concurrent.futures import ThreadPoolExecutor
from .pxdFilter import FindUnselectedClusters
class PXD(FancyDict):
def __init__(self, data: dict = None) -> None:
self.name = 'pxd'
# list of pxd panels
self.panels = [[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 00
[[ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 01
[[ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-0.36 , 0.89 , 0.89 , -0.36 , -0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 02
[[ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 03
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 04
[[-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 05
[[-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [ 0.36 , -0.89 , -0.89 , 0.36 , 0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 06
[[-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 07
[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 08
[[ 0.345, 1.4 , 1.4 , 0.345, 0.345], [ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 09
[[ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 10
[[ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 11
[[ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-0.345, -1.4 , -1.4 , -0.345, -0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 12
[[ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 13
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 14
[[-0.345, -1.4 , -1.4 , -0.345, -0.345], [-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 15
[[-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 16
[[-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 17
[[-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [ 0.345, 1.4 , 1.4 , 0.345, 0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 18
[[-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]]] # 19
# these are the branch names for cluster info in the root file
self.clusters = ['PXDClusters/PXDClusters.m_clsCharge',
'PXDClusters/PXDClusters.m_seedCharge',
'PXDClusters/PXDClusters.m_clsSize',
'PXDClusters/PXDClusters.m_uSize',
'PXDClusters/PXDClusters.m_vSize',
'PXDClusters/PXDClusters.m_uPosition',
'PXDClusters/PXDClusters.m_vPosition',
'PXDClusters/PXDClusters.m_sensorID']
# these are the branch names for cluster digits in the root file
self.digits = ['PXDDigits/PXDDigits.m_uCellID',
'PXDDigits/PXDDigits.m_vCellID',
'PXDDigits/PXDDigits.m_charge']
# this establishes the relationship between clusters and digits
# because for some reaseon the branch for digits has a different
# size than the cluster branch
self.clusterToDigis = 'PXDClustersToPXDDigits/m_elements/m_elements.m_to'
# these are the branch names for monte carlo data in the root file
self.mcData = ['MCParticles/MCParticles.m_pdg',
'MCParticles/MCParticles.m_momentum_x',
'MCParticles/MCParticles.m_momentum_y',
'MCParticles/MCParticles.m_momentum_z']
# these two establish the relation ship to an from clusters and monte carlo
# there more entries than in the cluster data, but there still mc data missing
# for some cluster files
self.clusterToMC = 'PXDClustersToMCParticles/m_elements/m_elements.m_to'
self.mcToCluster = 'PXDClustersToMCParticles/m_elements/m_elements.m_from'
# these are the sensor IDs of the pxd modules/panels from the root file, they are
# use to identify on which panels a cluster event happened
self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280,
9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304,
16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])
# every line in this corresponds to one entry in the array above, this is used
# to put the projected uv plane in the right position
self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255],
[ 1.3985 , 0.23238491, -0.88255],
[ 0.80146531, 1.17631236, 3.68255],
[ 0.82407264, 1.15370502, -0.88255],
[-0.2582769 , 1.3985 , 3.68255],
[-0.2322286 , 1.3985 , -0.88255],
[-1.17531186, 0.80246583, 3.68255 ],
[-1.15510614, 0.82267151, -0.88255],
[-1.3985 , -0.2645974 , 3.68255],
[-1.3985 , -0.23012119, -0.88255],
[-0.80591227, -1.17186534, 3.68255],
[-0.82344228, -1.15433536, -0.88255],
[ 0.26975836, -1.3985 , 3.68255],
[ 0.23326624, -1.3985 , -0.88255],
[ 1.1746111 , -0.80316652, 3.68255],
[ 1.15205703, -0.82572062, -0.88255],
[ 2.2015 , 0.26959865, 5.01305],
[ 2.2015 , 0.2524582 , -1.21305],
[ 1.77559093, 1.32758398, 5.01305],
[ 1.78212569, 1.31626522, -1.21305],
[ 0.87798948, 2.03516717, 5.01305],
[ 0.88478563, 2.03124357, -1.21305],
[-0.26129975, 2.2015 , 5.01305],
[-0.25184137, 2.2015 , -1.21305],
[-1.32416655, 1.77756402, 5.01305],
[-1.31417539, 1.78333226, -1.21305],
[-2.03421133, 0.87964512, 5.01305],
[-2.02960691, 0.88762038, -1.21305],
[-2.2015 , -0.25954151, 5.01305],
[-2.2015 , -0.24969109, -1.21305],
[-1.77636043, -1.32625112, 5.01305],
[-1.78138268, -1.31755219, -1.21305],
[-0.87493138, -2.03693277, 5.01305 ],
[-0.8912978 , -2.02748378, -1.21305],
[ 0.26489725, -2.2015 , 5.01305],
[ 0.25364439, -2.2015 , -1.21305],
[ 1.3269198 , -1.7759744 , 5.01305],
[ 1.32258793, -1.77847528, -1.21305],
[ 2.03616649, -0.87625871, 5.01305],
[ 2.02936825, -0.8880338 , -1.21305]])
# every entry here corresponds to the entries in the array above, these are
# used for rotating the projected uv plane
self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360,
360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210,
240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420,
420])
# the layer and ladder arrays, for finding them from sensor id
self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21])
# all transpormaations are stored in a dict, with the sensor id as a keyword
self.transformation = {}
self.layersLadders = {}
for i in range(len(self.panelIDs)):
self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]]
self.layersLadders[str(self.panelIDs[i])] = [self.panelLayer[i], self.panelLadder[i]]
# parameter for checking if coordinates have been loaded
self.gotClusters = False
self.gotCoordinates = False
self.gotSphericals = False
self.gotLayers = False
self.gotDigits = False
self.gotMatrices = False
self.gotMCData = False
self.gotFiltered = False
# this dict stores the data
self.data = data if data is not None else {}
# inorder to find roi unselected clusters
self.findUnselectedClusters = FindUnselectedClusters(self.panelIDs)
def getClusters(self, eventTree: TTree, includeUnSelected: bool = False) -> None:
"""
this uses the array from __init__ to load different branches into the data dict
"""
self.gotClusters = True
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
for branch in self.clusters:
data = self._getData(eventTree, branch)
keyword = branch.split('_')[-1]
self.data[keyword] = data
self.data['roiSelected'] = np.array([True] * len(self.data['clsCharge']))
clusters = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
self._getEventNumbers(clusters)
if includeUnSelected:
unselectedClusters = self.findUnselectedClusters.getClusters(eventTree)
for key in unselectedClusters:
self.data[key] = np.concatenate((self.data[key], unselectedClusters[key]))
self.data['detector'] = np.array(['pxd'] * len(self.data['clsCharge']))
def _getEventNumbers(self, clusters: np.ndarray, offset: int = 0) -> None:
"""
this generates event numbers from the structure of pxd clusters
"""
eventNumbers = []
for i in range(len(clusters)):
eventNumbers.append(np.array([i]*len(clusters[i])) + offset)
self.data['eventNumber'] = np.hstack(eventNumbers)
def _getData(self, eventTree: TTree, keyword: str, library: str = 'np') -> np.ndarray:
"""
a private method for converting branches into something useful, namely
into numpy arrays, if the keyward library is set to np.
keyword: str = the full branch name
library: str = can be 'np' (numpy), 'pd' (pandas) or 'ak' (akward)
see uproot documentation for more info
"""
try:
data = eventTree.arrays(keyword, library=library)[keyword]
return np.hstack(data)
except:
return KeyError
def getDigits(self, eventTree: TTree) -> None:
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
reorganizes digits, so that they fit to the clusters
"""
uCellIDs = eventTree.arrays(self.digits[0], library='np')[self.digits[0]]
vCellIDs = eventTree.arrays(self.digits[1], library='np')[self.digits[1]]
cellCharges = eventTree.arrays(self.digits[2], library='np')[self.digits[2]]
# this establishes the relation between digits and clusters, it's still
# shocking to me, that this is necessary, why aren't digits stored in the
# same way as clusters, than one wouldn't need to jump through hoops just
# to have the data in a usable und sensible manner
# root is such a retarded file format
clusterDigits = eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis]
self.data['uCellIDs'] = []
self.data['vCellIDs'] = []
self.data['cellCharges'] = []
for event in range(len(clusterDigits)):
for cls in clusterDigits[event]:
self.data['uCellIDs'].append(uCellIDs[event][cls])
self.data['vCellIDs'].append(vCellIDs[event][cls])
self.data['cellCharges'].append(cellCharges[event][cls])
self.data['uCellIDs'] = np.array(self.data['uCellIDs'], dtype=object)
self.data['vCellIDs'] = np.array(self.data['vCellIDs'], dtype=object)
self.data['cellCharges'] = np.array(self.data['cellCharges'], dtype=object)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
unselectedClusters = self.findUnselectedClusters.getDigits(eventTree)
for key in unselectedClusters:
self.data[key] = np.concatenate((self.data[key], unselectedClusters[key]))
self.gotDigits = True
def getMatrices(self, eventTree: TTree, matrixSize: tuple = (9, 9)) -> None:
"""
Loads the digit branches into arrays and converts them into adc matrices
"""
popDigits = False
if self.gotDigits is False:
self.getDigits(eventTree)
popDigits = True
uCellIDs = self.data['uCellIDs']
vCellIDs = self.data['vCellIDs']
cellCharges = self.data['cellCharges']
indexChunks = np.array_split(range(len(cellCharges)), 4)
with ThreadPoolExecutor(max_workers=None) as executor:
futures = [executor.submit(self._getMatrices, chunk, uCellIDs, vCellIDs, cellCharges, matrixSize) for chunk in indexChunks]
results = [future.result() for future in futures]
# Combine the results from all chunks
self.data['matrix'] = np.concatenate(results).astype('int')
if popDigits is True:
self.data.pop('uCellIDs')
self.data.pop('vCellIDs')
self.data.pop('cellCharges')
self.gotDigits = False
self.gotMatrices = True
@staticmethod
def _getMatrices(indexChunks: ArrayLike, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, matrixSize: tuple = (9, 9)) -> np.ndarray:
"""
this takes the ragged/jagged digit arrays and converts them into 9x9 matrices
it's a rather slow process because of all the looping
"""
plotRange = np.array(matrixSize) // 2
events = []
for event in indexChunks:
# Since uCellIDs, vCellIDs, and cellCharges are now directly associated with clusters,
# we don't need digitIndices or maxChargeIndex
digitsU, digitsV, digitsCharge = np.array(uCellIDs[event]), np.array(vCellIDs[event]), np.array(cellCharges[event])
adcValues = []
# Find the center of the cluster (digit with the max charge)
uMax, vMax = digitsU[digitsCharge.argmax()], digitsV[digitsCharge.argmax()]
uPos, vPos = digitsU - uMax + plotRange[0], digitsV - vMax + plotRange[1]
valid_indices = (uPos >= 0) & (uPos < matrixSize[0]) & (vPos >= 0) & (vPos < matrixSize[1])
cacheImg = np.zeros(matrixSize)
cacheImg[uPos[valid_indices].astype(int), vPos[valid_indices].astype(int)] = digitsCharge[valid_indices]
adcValues.append(cacheImg)
events.extend(adcValues)
return np.array(events, dtype=object)
def getCoordinates(self, eventTree: TTree) -> None:
"""
converting the uv coordinates, together with sensor ids, into xyz coordinates
"""
# checking if cluster parameters have been loaded
if self.gotClusters is False:
self.getClusters(eventTree)
# setting a bool for checking if coordinates were calculated
self.gotCoordinates = True
indexChunnks = np.array_split(range(len(self.data['sensorID'])), 4)
with ThreadPoolExecutor(max_workers=None) as executor:
futures = [executor.submit(self._getCoordinates, self.data['uPosition'][chunk], self.data['vPosition'][chunk], self.data['sensorID'][chunk]) for chunk in indexChunnks]
xResults, yResults, zResults = [], [], []
for future in futures:
x, y, z = future.result()
xResults.append(x)
yResults.append(y)
zResults.append(z)
self.data['xPosition'] = np.concatenate(xResults)
self.data['yPosition'] = np.concatenate(yResults)
self.data['zPosition'] = np.concatenate(zResults)
self.gotCoordinates = True
def _getCoordinates(self, uPositions: ArrayLike, vPositions: ArrayLike, sensorIDs: ArrayLike) -> tuple[np.ndarray]:
"""
a private method for transposing/converting 2d uv coords into 3d xyz coordinates
"""
length = len(sensorIDs)
xArr, yArr, zArr = np.zeros(length), np.zeros(length), np.zeros(length)
# iterting over the cluster arrays
for index, (u, v, sensor_id) in enumerate(zip(uPositions, vPositions, sensorIDs)):
# grabbing the shift vector and rotation angle
shift, angle = self.transformation[str(sensor_id)]
# setting up rotation matrix
theta = np.deg2rad(angle)
rotMatrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
# projecting uv coordinates into 3d space
point = np.array([u, 0, v])
# shifting and rotating the projected vector
shifted = rotMatrix.dot(point) + shift
xArr[index], yArr[index], zArr[index] = shifted
return xArr, yArr, zArr
def getSphericals(self) -> None:
"""
Calculate spherical coordinates for each cluster.
"""
# Checking if coordinates have been loaded
popCoords = False
if self.gotCoordinates is False:
self.getCoordinates()
popCoords = True
xPosition = self.data['xPosition']
yPosition = self.data['yPosition']
zPosition = self.data['zPosition']
r, theta, phi = self._calcSphericals(xPosition, yPosition, zPosition)
self.data['rPosition'] = r
self.data['thetaPosition'] = theta
self.data['phiPosition'] = phi
self.gotSphericals = True
if popCoords:
self.data.pop('xPosition')
self.data.pop('yPosition')
self.data.pop('zPosition')
self.gotCoordinates = False
@staticmethod
def _calcSphericals(xPosition: np.ndarray, yPosition: np.ndarray, zPosition: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
xSquare = np.square(xPosition)
ySquare = np.square(yPosition)
zSquare = np.square(zPosition)
# Avoid division by zero by replacing zeros with a small number
r = np.sqrt(xSquare + ySquare + zSquare)
rSafe = np.where(r == 0, 1e-10, r)
theta = np.arccos(zPosition / rSafe)
phi = np.arctan2(yPosition, xPosition)
return r, theta, phi
def getLayers(self, eventTree: TTree) -> None:
"""
looks up the corresponding layers and ladders for every cluster
"""
if self.gotClusters is False:
self.getClusters(eventTree)
layers, ladders = [], []
for id in self.data['sensorID']:
layer, ladder = self.layersLadders[str(id)]
layers.append(layer)
ladders.append(ladder)
self.data['layer'] = np.array(layers, dtype=int)
self.data['ladder'] = np.array(ladders, dtype=int)
self.gotLayers = True
def getMCData(self, eventTree: TTree) -> None:
"""
this loads the monte carlo from the root file
"""
if self.includeUnSelected:
raise Warning('mc data are not supported on roi unselected data')
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
# the monte carlo data, they are longer than the cluster data
pdg = eventTree.arrays(self.mcData[0], library='np')[self.mcData[0]]
momentumX = eventTree.arrays(self.mcData[1], library='np')[self.mcData[1]]
momentumY = eventTree.arrays(self.mcData[2], library='np')[self.mcData[2]]
momentumZ = eventTree.arrays(self.mcData[3], library='np')[self.mcData[3]]
# this loads the relation ships to and from clusters and mc data
# this is the same level of retardedness as with the cluster digits
clusterToMC = eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC]
mcToCluster = eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster]
# it need the cluster charge as a jagged/ragged array, maybe I could simply
# use the event numbers, but I am too tired to fix this shitty file format
clsCharge = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
# reorganizing MC data
momentumXList = []
momentumYList = []
momentumZList = []
pdgList = []
clusterNumbersList = []
for i in range(len(clusterToMC)):
# _fillMCList fills in the missing spots, because there are not mc data for
# every cluster, even though there are more entries in this branch than
# in the cluster branch... as I said, the root format is retarded
fullClusterReferences = self._fillMCList(mcToCluster[i], clusterToMC[i], len(clsCharge[i]))
clusterNumbersList.append(fullClusterReferences)
pdgs, xmom, ymom, zmom = self._getMCData(fullClusterReferences, pdg[i], momentumX[i], momentumY[i], momentumZ[i])
momentumXList.append(xmom)
momentumYList.append(ymom)
momentumZList.append(zmom)
pdgList.append(pdgs)
self.data['momentumX'] = np.hstack(momentumXList).astype(float)
self.data['momentumY'] = np.hstack(momentumYList).astype(float)
self.data['momentumZ'] = np.hstack(momentumZList).astype(float)
self.data['pdg'] = np.hstack(pdgList).astype(int)
self.data['clsNumber'] = np.hstack(clusterNumbersList).astype(int)
self.gotMCData = True
@staticmethod
def _findMissing(lst: list, length: int) -> list:
"""
a private method for finding missing elements in mc data arrays
"""
return sorted(set(range(0, length)) - set(lst))
def _fillMCList(self, fromClusters: ArrayLike, toClusters: ArrayLike, length: ArrayLike) -> list:
"""
a private method for filling MC data arrays where clusters don't have
any information
"""
missingIndex = self._findMissing(fromClusters, length)
testList = [-1] * length
fillIndex = 0
for i in range(len(testList)):
if i in missingIndex:
testList[i] = -1
else:
try:
testList[i] = int(toClusters[fillIndex])
except TypeError:
testList[i] = int(toClusters[fillIndex][0])
fillIndex += 1
return testList
@staticmethod
def _getMCData(toClusters: ArrayLike, pdgs: ArrayLike, xMom: ArrayLike, yMom: ArrayLike, zMom: ArrayLike) -> tuple[np.ndarray]:
"""
after filling and reorganizing MC data arrays one can finally collect the
actual MC data, where there's data missing I will with zeros
"""
pxList, pyList, pzList = [], [], []
pdgList = []
for references in toClusters:
if references == -1:
pxList.append(0)
pyList.append(0)
pzList.append(0)
pdgList.append(0)
else:
pxList.append(xMom[references])
pyList.append(yMom[references])
pzList.append(zMom[references])
pdgList.append(pdgs[references])
return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list)