Newer
Older
import numpy as np
from numpy.typing import ArrayLike
from uproot import TTree
from ..common import FancyDict
from concurrent.futures import ThreadPoolExecutor
from .pxdFilter import FindUnselectedClusters
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class PXD(FancyDict):
def __init__(self, data: dict = None) -> None:
self.name = 'pxd'
# list of pxd panels
self.panels = [[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 00
[[ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 01
[[ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-0.36 , 0.89 , 0.89 , -0.36 , -0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 02
[[ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 03
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 04
[[-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 05
[[-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [ 0.36 , -0.89 , -0.89 , 0.36 , 0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 06
[[-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 07
[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 08
[[ 0.345, 1.4 , 1.4 , 0.345, 0.345], [ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 09
[[ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 10
[[ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 11
[[ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-0.345, -1.4 , -1.4 , -0.345, -0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 12
[[ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 13
[[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 14
[[-0.345, -1.4 , -1.4 , -0.345, -0.345], [-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 15
[[-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 16
[[-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 17
[[-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [ 0.345, 1.4 , 1.4 , 0.345, 0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 18
[[-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]]] # 19
# these are the branch names for cluster info in the root file
self.clusters = ['PXDClusters/PXDClusters.m_clsCharge',
'PXDClusters/PXDClusters.m_seedCharge',
'PXDClusters/PXDClusters.m_clsSize',
'PXDClusters/PXDClusters.m_uSize',
'PXDClusters/PXDClusters.m_vSize',
'PXDClusters/PXDClusters.m_uPosition',
'PXDClusters/PXDClusters.m_vPosition',
'PXDClusters/PXDClusters.m_sensorID']
# these are the branch names for cluster digits in the root file
self.digits = ['PXDDigits/PXDDigits.m_uCellID',
'PXDDigits/PXDDigits.m_vCellID',
'PXDDigits/PXDDigits.m_charge']
# this establishes the relationship between clusters and digits
# because for some reaseon the branch for digits has a different
# size than the cluster branch
self.clusterToDigis = 'PXDClustersToPXDDigits/m_elements/m_elements.m_to'
# these are the branch names for monte carlo data in the root file
self.mcData = ['MCParticles/MCParticles.m_pdg',
'MCParticles/MCParticles.m_momentum_x',
'MCParticles/MCParticles.m_momentum_y',
'MCParticles/MCParticles.m_momentum_z']
# these two establish the relation ship to an from clusters and monte carlo
# there more entries than in the cluster data, but there still mc data missing
# for some cluster files
self.clusterToMC = 'PXDClustersToMCParticles/m_elements/m_elements.m_to'
self.mcToCluster = 'PXDClustersToMCParticles/m_elements/m_elements.m_from'
# these are the sensor IDs of the pxd modules/panels from the root file, they are
# use to identify on which panels a cluster event happened
self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280,
9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304,
16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])
# every line in this corresponds to one entry in the array above, this is used
# to put the projected uv plane in the right position
self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255],
[ 1.3985 , 0.23238491, -0.88255],
[ 0.80146531, 1.17631236, 3.68255],
[ 0.82407264, 1.15370502, -0.88255],
[-0.2582769 , 1.3985 , 3.68255],
[-0.2322286 , 1.3985 , -0.88255],
[-1.17531186, 0.80246583, 3.68255 ],
[-1.15510614, 0.82267151, -0.88255],
[-1.3985 , -0.2645974 , 3.68255],
[-1.3985 , -0.23012119, -0.88255],
[-0.80591227, -1.17186534, 3.68255],
[-0.82344228, -1.15433536, -0.88255],
[ 0.26975836, -1.3985 , 3.68255],
[ 0.23326624, -1.3985 , -0.88255],
[ 1.1746111 , -0.80316652, 3.68255],
[ 1.15205703, -0.82572062, -0.88255],
[ 2.2015 , 0.26959865, 5.01305],
[ 2.2015 , 0.2524582 , -1.21305],
[ 1.77559093, 1.32758398, 5.01305],
[ 1.78212569, 1.31626522, -1.21305],
[ 0.87798948, 2.03516717, 5.01305],
[ 0.88478563, 2.03124357, -1.21305],
[-0.26129975, 2.2015 , 5.01305],
[-0.25184137, 2.2015 , -1.21305],
[-1.32416655, 1.77756402, 5.01305],
[-1.31417539, 1.78333226, -1.21305],
[-2.03421133, 0.87964512, 5.01305],
[-2.02960691, 0.88762038, -1.21305],
[-2.2015 , -0.25954151, 5.01305],
[-2.2015 , -0.24969109, -1.21305],
[-1.77636043, -1.32625112, 5.01305],
[-1.78138268, -1.31755219, -1.21305],
[-0.87493138, -2.03693277, 5.01305 ],
[-0.8912978 , -2.02748378, -1.21305],
[ 0.26489725, -2.2015 , 5.01305],
[ 0.25364439, -2.2015 , -1.21305],
[ 1.3269198 , -1.7759744 , 5.01305],
[ 1.32258793, -1.77847528, -1.21305],
[ 2.03616649, -0.87625871, 5.01305],
[ 2.02936825, -0.8880338 , -1.21305]])
# every entry here corresponds to the entries in the array above, these are
# used for rotating the projected uv plane
self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360,
360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210,
240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420,
420])
# the layer and ladder arrays, for finding them from sensor id
self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21])
# all transpormaations are stored in a dict, with the sensor id as a keyword
self.transformation = {}
self.layersLadders = {}
for i in range(len(self.panelIDs)):
self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]]
self.layersLadders[str(self.panelIDs[i])] = [self.panelLayer[i], self.panelLadder[i]]
# parameter for checking if coordinates have been loaded
self.gotClusters = False
self.gotCoordinates = False
self.gotSphericals = False
self.gotLayers = False
self.gotDigits = False
self.gotMatrices = False
self.gotMCData = False
self.gotFiltered = False
# this dict stores the data
self.data = data if data is not None else {}
# inorder to find roi unselected clusters
self.findUnselectedClusters = FindUnselectedClusters()
def getClusters(self, eventTree: TTree, fileName: str = None) -> None:
"""
this uses the array from __init__ to load different branches into the data dict
"""
self.gotClusters = True
for branch in self.clusters:
data = self._getData(eventTree, branch)
keyword = branch.split('_')[-1]
self.set(keyword, data)
#self.data[keyword] = data
self.set('roiSelected', np.array([True] * len(data)))
self.set('fileName', np.array([fileName] * len(data)))
#self.data['roiSelected'] = np.array([True] * self.numClusters)
#self.data['fileName'] = np.array([fileName] * self.numClusters)
clusters = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
self._getEventNumbers(clusters)
if self.includeUnSelected:
unselectedClusters = self.findUnselectedClusters.getClusters(eventTree)
self.extend(unselectedClusters)
#for key in unselectedClusters:
# self.data[key] = np.concatenate((self.data[key], unselectedClusters[key]))
self.set('detector', np.array(['pxd'] * len(data)))
#self.data['detector'] = np.array(['pxd'] * self.numClusters)
def _getEventNumbers(self, clusters: np.ndarray, offset: int = 0) -> None:
"""
this generates event numbers from the structure of pxd clusters
"""
eventNumbers = []
for i in range(len(clusters)):
eventNumbers.append(np.array([i]*len(clusters[i])) + offset)
self.set('eventNumber', np.concatenate(eventNumbers))
#self.data['eventNumber'] = np.hstack(eventNumbers)
def _getData(self, eventTree: TTree, keyword: str, library: str = 'np') -> np.ndarray:
"""
a private method for converting branches into something useful, namely
into numpy arrays, if the keyward library is set to np.
keyword: str = the full branch name
library: str = can be 'np' (numpy), 'pd' (pandas) or 'ak' (akward)
see uproot documentation for more info
"""
try:
data = eventTree.arrays(keyword, library=library)[keyword]
return np.hstack(data)
except:
return KeyError
def getDigits(self, eventTree: TTree) -> None:
"""
reorganizes digits, so that they fit to the clusters
"""
uCellIDs = eventTree.arrays(self.digits[0], library='np')[self.digits[0]]
vCellIDs = eventTree.arrays(self.digits[1], library='np')[self.digits[1]]
cellCharges = eventTree.arrays(self.digits[2], library='np')[self.digits[2]]
# this establishes the relation between digits and clusters, it's still
# shocking to me, that this is necessary, why aren't digits stored in the
# same way as clusters, than one wouldn't need to jump through hoops just
# to have the data in a usable und sensible manner
# root is such a retarded file format
clusterDigits = eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis]
uCellIDsTemp = []
vCellIDsTemp = []
cellChargesTemp = []
for event in range(len(clusterDigits)):
for cls in clusterDigits[event]:
uCellIDsTemp.append(uCellIDs[event][cls])
vCellIDsTemp.append(vCellIDs[event][cls])
cellChargesTemp.append(cellCharges[event][cls])
self.set('uCellIDs', np.array(uCellIDsTemp, dtype=object))
self.set('vCellIDs', np.array(vCellIDsTemp, dtype=object))
self.set('cellCharges', np.array(cellChargesTemp, dtype=object))
#self.data['uCellIDs'] = np.array(uCellIDsTemp, dtype=object)
#self.data['vCellIDs'] = np.array(vCellIDsTemp, dtype=object)
#self.data['cellCharges'] = np.array(cellChargesTemp, dtype=object)
unselectedClusters = self.findUnselectedClusters.getDigits(eventTree)
self.extend(unselectedClusters)
self.gotDigits = True
def getMatrices(self, eventTree: TTree, matrixSize: tuple = (9, 9)) -> None:
"""
Loads the digit branches into arrays and converts them into adc matrices
"""
popDigits = False
if self.gotDigits is False:
self.getDigits(eventTree)
popDigits = True
uCellIDs = self.data['uCellIDs']
vCellIDs = self.data['vCellIDs']
cellCharges = self.data['cellCharges']
indexChunks = np.array_split(range(len(cellCharges)), 4)
with ThreadPoolExecutor(max_workers=None) as executor:
futures = [executor.submit(self._getMatrices, chunk, uCellIDs, vCellIDs, cellCharges, matrixSize) for chunk in indexChunks]
results = [future.result() for future in futures]
# Combine the results from all chunks
self.set('matrix', np.concatenate(results).astype('int'))
#self.data['matrix'] = np.concatenate(results).astype('int')
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
if popDigits is True:
self.data.pop('uCellIDs')
self.data.pop('vCellIDs')
self.data.pop('cellCharges')
self.gotDigits = False
self.gotMatrices = True
@staticmethod
def _getMatrices(indexChunks: ArrayLike, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, matrixSize: tuple = (9, 9)) -> np.ndarray:
"""
this takes the ragged/jagged digit arrays and converts them into 9x9 matrices
it's a rather slow process because of all the looping
"""
plotRange = np.array(matrixSize) // 2
events = []
for event in indexChunks:
# Since uCellIDs, vCellIDs, and cellCharges are now directly associated with clusters,
# we don't need digitIndices or maxChargeIndex
digitsU, digitsV, digitsCharge = np.array(uCellIDs[event]), np.array(vCellIDs[event]), np.array(cellCharges[event])
adcValues = []
# Find the center of the cluster (digit with the max charge)
uMax, vMax = digitsU[digitsCharge.argmax()], digitsV[digitsCharge.argmax()]
uPos, vPos = digitsU - uMax + plotRange[0], digitsV - vMax + plotRange[1]
valid_indices = (uPos >= 0) & (uPos < matrixSize[0]) & (vPos >= 0) & (vPos < matrixSize[1])
cacheImg = np.zeros(matrixSize)
cacheImg[uPos[valid_indices].astype(int), vPos[valid_indices].astype(int)] = digitsCharge[valid_indices]
adcValues.append(cacheImg)
events.extend(adcValues)
return np.array(events, dtype=object)
def getCoordinates(self, eventTree: TTree) -> None:
"""
converting the uv coordinates, together with sensor ids, into xyz coordinates
"""
# checking if cluster parameters have been loaded
if self.gotClusters is False:
self.getClusters(eventTree)
#setting up index chunks for multi threading
indexChunnks = np.array_split(range(len(self.data['sensorID'])), 4)
with ThreadPoolExecutor(max_workers=None) as executor:
futures = [executor.submit(self._getCoordinates, self.data['uPosition'][chunk], self.data['vPosition'][chunk], self.data['sensorID'][chunk]) for chunk in indexChunnks]
xResults, yResults, zResults = [], [], []
for future in futures:
x, y, z = future.result()
xResults.append(x)
yResults.append(y)
zResults.append(z)
self.set('xPosition', np.concatenate(xResults))
self.set('yPosition', np.concatenate(yResults))
self.set('zPosition', np.concatenate(zResults))
#self.data['xPosition'] = np.concatenate(xResults)
#self.data['yPosition'] = np.concatenate(yResults)
#self.data['zPosition'] = np.concatenate(zResults)
# setting a bool for checking if coordinates were calculated
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
self.gotCoordinates = True
def _getCoordinates(self, uPositions: ArrayLike, vPositions: ArrayLike, sensorIDs: ArrayLike) -> tuple[np.ndarray]:
"""
a private method for transposing/converting 2d uv coords into 3d xyz coordinates
"""
length = len(sensorIDs)
xArr, yArr, zArr = np.zeros(length), np.zeros(length), np.zeros(length)
# iterting over the cluster arrays
for index, (u, v, sensor_id) in enumerate(zip(uPositions, vPositions, sensorIDs)):
# grabbing the shift vector and rotation angle
shift, angle = self.transformation[str(sensor_id)]
# setting up rotation matrix
theta = np.deg2rad(angle)
rotMatrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]])
# projecting uv coordinates into 3d space
point = np.array([u, 0, v])
# shifting and rotating the projected vector
shifted = rotMatrix.dot(point) + shift
xArr[index], yArr[index], zArr[index] = shifted
return xArr, yArr, zArr
def getSphericals(self, eventTree: TTree) -> None:
"""
Calculate spherical coordinates for each cluster.
"""
# Checking if coordinates have been loaded
popCoords = False
if self.gotCoordinates is False:
self.getCoordinates(eventTree)
popCoords = True
xPosition = self.data['xPosition']
yPosition = self.data['yPosition']
zPosition = self.data['zPosition']
r, theta, phi = self._calcSphericals(xPosition, yPosition, zPosition)
self.set('rPosition', r)
self.set('thetaPosition', theta)
self.set('phiPosition', phi)
#self.data['rPosition'] = r
#self.data['thetaPosition'] = theta
#self.data['phiPosition'] = phi
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
self.gotSphericals = True
if popCoords:
self.data.pop('xPosition')
self.data.pop('yPosition')
self.data.pop('zPosition')
self.gotCoordinates = False
@staticmethod
def _calcSphericals(xPosition: np.ndarray, yPosition: np.ndarray, zPosition: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
xSquare = np.square(xPosition)
ySquare = np.square(yPosition)
zSquare = np.square(zPosition)
# Avoid division by zero by replacing zeros with a small number
r = np.sqrt(xSquare + ySquare + zSquare)
rSafe = np.where(r == 0, 1e-10, r)
theta = np.arccos(zPosition / rSafe)
phi = np.arctan2(yPosition, xPosition)
return r, theta, phi
def getLayers(self, eventTree: TTree) -> None:
"""
looks up the corresponding layers and ladders for every cluster
"""
if self.gotClusters is False:
self.getClusters(eventTree)
layers, ladders = [], []
for id in self.data['sensorID']:
layer, ladder = self.layersLadders[str(id)]
layers.append(layer)
ladders.append(ladder)
self.set('layer', np.array(layers, dtype=int))
self.set('ladder', np.array(ladders, dtype=int))
#self.data['layer'] = np.array(layers, dtype=int)
#self.data['ladder'] = np.array(ladders, dtype=int)
self.gotLayers = True
def getMCData(self, eventTree: TTree) -> None:
"""
this loads the monte carlo from the root file
"""
if self.gotClusters is False:
self.getClusters(eventTree)
warnings.warn('mc data are not supported on roi unselected data')
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# the monte carlo data, they are longer than the cluster data
pdg = eventTree.arrays(self.mcData[0], library='np')[self.mcData[0]]
momentumX = eventTree.arrays(self.mcData[1], library='np')[self.mcData[1]]
momentumY = eventTree.arrays(self.mcData[2], library='np')[self.mcData[2]]
momentumZ = eventTree.arrays(self.mcData[3], library='np')[self.mcData[3]]
# this loads the relation ships to and from clusters and mc data
# this is the same level of retardedness as with the cluster digits
clusterToMC = eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC]
mcToCluster = eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster]
# it need the cluster charge as a jagged/ragged array, maybe I could simply
# use the event numbers, but I am too tired to fix this shitty file format
clsCharge = eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']
# reorganizing MC data
momentumXList = []
momentumYList = []
momentumZList = []
pdgList = []
clusterNumbersList = []
for i in range(len(clusterToMC)):
# _fillMCList fills in the missing spots, because there are not mc data for
# every cluster, even though there are more entries in this branch than
# in the cluster branch... as I said, the root format is retarded
fullClusterReferences = self._fillMCList(mcToCluster[i], clusterToMC[i], len(clsCharge[i]))
clusterNumbersList.append(fullClusterReferences)
pdgs, xmom, ymom, zmom = self._getMCData(fullClusterReferences, pdg[i], momentumX[i], momentumY[i], momentumZ[i])
momentumXList.append(xmom)
momentumYList.append(ymom)
momentumZList.append(zmom)
pdgList.append(pdgs)
self.set('momentumX', np.hstack(momentumXList).astype(float))
self.set('momentumY', np.hstack(momentumYList).astype(float))
self.set('momentumZ', np.hstack(momentumZList).astype(float))
self.set('pdg', np.hstack(pdgList).astype(int))
self.set('clsNumber', np.hstack(clusterNumbersList).astype(int))
#self.data['momentumX'] = np.hstack(momentumXList).astype(float)
#self.data['momentumY'] = np.hstack(momentumYList).astype(float)
#self.data['momentumZ'] = np.hstack(momentumZList).astype(float)
#self.data['pdg'] = np.hstack(pdgList).astype(int)
#self.data['clsNumber'] = np.hstack(clusterNumbersList).astype(int)
if self.includeUnSelected:
sampleSize = np.sum(self.data['roiSelected'] == False)
missingMCData = self.findUnselectedClusters.fillMCData({
'momentumX': self.data['momentumX'],
'momentumY': self.data['momentumY'],
'momentumZ': self.data['momentumZ'],
'pdg': self.data['pdg'],
'clsNumber': self.data['clsNumber']
})
self.extend(missingMCData)
#for key in missingMCData:
# self.data[key] = np.hstack((self.data[key], missingMCData[key][0:sampleSize]))
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
@staticmethod
def _findMissing(lst: list, length: int) -> list:
"""
a private method for finding missing elements in mc data arrays
"""
return sorted(set(range(0, length)) - set(lst))
def _fillMCList(self, fromClusters: ArrayLike, toClusters: ArrayLike, length: ArrayLike) -> list:
"""
a private method for filling MC data arrays where clusters don't have
any information
"""
missingIndex = self._findMissing(fromClusters, length)
testList = [-1] * length
fillIndex = 0
for i in range(len(testList)):
if i in missingIndex:
testList[i] = -1
else:
try:
testList[i] = int(toClusters[fillIndex])
except TypeError:
testList[i] = int(toClusters[fillIndex][0])
fillIndex += 1
return testList
@staticmethod
def _getMCData(toClusters: ArrayLike, pdgs: ArrayLike, xMom: ArrayLike, yMom: ArrayLike, zMom: ArrayLike) -> tuple[np.ndarray]:
"""
after filling and reorganizing MC data arrays one can finally collect the
actual MC data, where there's data missing I will with zeros
"""
pxList, pyList, pzList = [], [], []
pdgList = []
for references in toClusters:
if references == -1:
pxList.append(0)
pyList.append(0)
pzList.append(0)
pdgList.append(0)
else:
pxList.append(xMom[references])
pyList.append(yMom[references])
pzList.append(zMom[references])
pdgList.append(pdgs[references])
return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list)