Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# HA 04 und 04 Schmidt "
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## 0 Initialization and Helper Functions"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pathlib # for handling file system\n",
"import random\n",
"import time \n",
"import copy # for copy objects \n",
"import itertools # use products for iterations\n",
"\n",
"from matplotlib import pyplot as plt\n",
"from matplotlib import animation as animation\n",
"from matplotlib.colors import ListedColormap\n",
"\n",
"from IPython.display import HTML\n",
"\n",
"from collections import deque # properties of a linked list to left and right\n",
"from queue import Queue, PriorityQueue\n",
"import numpy as np\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def plot_puzzle_config(ax, config):\n",
" \"\"\"Visualise a given configuration of the 8-puzzle.\"\"\"\n",
" cmap = ListedColormap([\"lightgray\", \"lightblue\"])\n",
" ax.matshow(config == 0, cmap=cmap)\n",
" ax.set_xticks([x - 0.5 for x in ax.get_xticks()][1:], minor='true')\n",
" ax.set_yticks([y - 0.5 for y in ax.get_yticks()][1:], minor='true')\n",
" ax.grid(which='minor')\n",
" for row in range(3):\n",
" for col in range(3):\n",
" value = config[row, col]\n",
" ax.text(col, row, str(value), \n",
" va=\"center\", ha=\"center\", \n",
" font={'weight': 'bold' if value == 0 else 'normal'})"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def animate_moves(solution_path, output_path = None, delay = 2000, video_inplace = True, filename = \"8puzzle_steps.mp4\"):\n",
" \"\"\"Given a initial configuration of the 8 puzzle animate all movesments that lead to the target configuration.\"\"\"\n",
"\n",
" def add_text(ax, config):\n",
" for row in range(3):\n",
" for col in range(3):\n",
" value: np.unit8 = config[row, col]\n",
" ax.text(col, row, str(value), \n",
" va=\"center\", ha=\"center\", \n",
" font={'weight': 'bold' if value == 0 else 'normal'})\n",
"\n",
" def animate(img, ax, config):\n",
" ax.clear()\n",
" img = ax.matshow(root.state == 0, cmap=cmap)\n",
" ax.set_xticks([x - 0.5 for x in ax.get_xticks()][1:], minor='true')\n",
" ax.set_yticks([y - 0.5 for y in ax.get_yticks()][1:], minor='true')\n",
" ax.grid(which='minor')\n",
" img.set_array(config == 0)\n",
" add_text(ax, config)\n",
" return (ax,)\n",
"\n",
" fig, ax = plt.subplots()\n",
"\n",
" cmap = ListedColormap([\"lightgray\", \"lightblue\"])\n",
" root = solution_path[0]\n",
" img_mat = ax.matshow(root.state == 0, cmap=cmap)\n",
" ax.set_xticks([x - 0.5 for x in ax.get_xticks()][1:], minor='true')\n",
" ax.set_yticks([y - 0.5 for y in ax.get_yticks()][1:], minor='true')\n",
" ax.grid(which='minor')\n",
" add_text(ax, root.state)\n",
"\n",
" anim = animation.FuncAnimation(\n",
" fig, lambda p: animate(img_mat, ax, p.state), solution_path, interval=delay\n",
" )\n",
" plt.close(fig)\n",
" \n",
" if not video_inplace and output_path is not None:\n",
" output_path.mkdir(parents=True, exist_ok=True)\n",
" anim.save(output_path / filename ) \n",
" return anim"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"class Node:\n",
" \"\"\"Base class that implements commonly-used methods for the tree search algorithms\"\"\"\n",
" \n",
" def __init__(self, state):\n",
" \"\"\"Initialiser of the base class.\n",
" \n",
" Parameters:\n",
" state: np.ndarray\n",
" State array representing a certain digit arrangement of the 8 puzzle.\n",
" \n",
" Output:\n",
" No output. Sets attribute variables of the class.\n",
" \"\"\"\n",
" self.state = state\n",
" self.empty_pos = self._get_empty_pos()\n",
" self.hash_value = hash(repr(self))\n",
"\n",
"\n",
" def _get_empty_pos(self):\n",
" \"\"\"Locate the position of the empty spot in the puzzle\"\"\"\n",
" row, col = np.where(self.state == 0)\n",
" return row[0], col[0]\n",
"\n",
" def __repr__(self):\n",
" return f\"Node({self.state})\"\n",
" \n",
" def __hash__(self):\n",
" return self.hash_value\n",
"\n",
" def __eq__(self, rhs): \n",
" return self.hash_value == rhs.hash_value\n",
"\n",
" def __ne__(self, rhs):\n",
" return not (self == rhs)\n",
" \n",
" def _next_positions(self):\n",
" \"\"\"Given a tuple of the current position of the 0 yield tuples of possible next positions.\n",
" \n",
" Parameters:\n",
" No parameters.\n",
" \n",
" Returns:\n",
" Generator[Tuple[int, int], None, None]. (See: https://docs.python.org/3/library/typing.html#typing.Generator)\n",
" When calling `next` on this generator a tuple with ints is returned which represents the \n",
" next position of the 0 in the array.\n",
" \"\"\"\n",
" # Values for the indices should be in the range 0 <= x < 2\n",
" idx0, idx1 = self.empty_pos\n",
" assert idx0 in range(3), \"idx0 must be in range(3)\"\n",
" assert idx1 in range(3), \"idx1 must be in range(3)\"\n",
"\n",
" # Can we move up?\n",
" if idx0 > 0:\n",
" yield (idx0 - 1, idx1)\n",
" # Can we move left?\n",
" if idx1 > 0:\n",
" yield (idx0, idx1 - 1)\n",
" # Can we move down?\n",
" if idx0 < 2:\n",
" yield (idx0 + 1, idx1)\n",
" # Can we move right?\n",
" if idx1 < 2:\n",
" yield (idx0, idx1 + 1)\n",
"\n",
" def _make_new_state(self, empty_pos_new):\n",
" \"\"\"Move the empty spot in the puzzle and thus make a new state but leave the state as is\n",
" \n",
" Parameters:\n",
" empty_pos_new: tuple\n",
" Pair of integer values that represent the next position of the empty spot of the puzzle.\n",
" buffer: np.ndarray\n",
" State array that will hold the new state of the puzzle after having moved the empty spot.\n",
" Output:\n",
" buffer, which is the new state.\n",
" \"\"\"\n",
" buffer = self.state.copy() # very important to leave the state unchanged\n",
" buffer[empty_pos_new] = self.state[self.empty_pos]\n",
" buffer[self.empty_pos] = self.state[empty_pos_new]\n",
"\n",
" return buffer \n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"class NodeRandom(Node):\n",
" \n",
" def randomise_state(self, num_moves):\n",
" \"\"\"Randomly change the current state of the puzzle\n",
" \n",
" Parameters:\n",
" num_moves: int\n",
" Number of times to randomly change the state of the puzzle.\n",
" \n",
" Output: Node\n",
" The (modified) version of the class instance. If `num_moves == 0` the instance of the class is returned unchanged. \n",
" \"\"\"\n",
" if num_moves > 0:\n",
" for _ in range(num_moves):\n",
" pos_new_random = random.choice(tuple(self._next_positions()))\n",
" self.state[:, :] = self._make_new_state(pos_new_random)\n",
" self.empty_pos = pos_new_random\n",
" \n",
" self.hash_value = hash(repr(self)) \n",
" return self\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"class NodeBFS(Node):\n",
" \"\"\"Node for the BFS tree search algorithm\"\"\"\n",
" \n",
" def __repr__(self):\n",
" return f\"NodeBFS({self.state})\"\n",
"\n",
" \n",
" def next_nodes(self):\n",
" \"\"\"Generate other state nodes that from the current node.\n",
" \n",
" Parameters:\n",
" No parameters.\n",
" \n",
" Output:\n",
" Generator[NodeBFS, None, None]. \n",
" Yields a node representing a state of the the puzzle that can be generated through\n",
" a single move of the empty spot in the current state.\n",
" \"\"\"\n",
" for pos_new in self._next_positions():\n",
" yield type(self)(self._make_new_state(pos_new))"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def reconstruct_path(to_node, parent):\n",
" \"\"\"Reconstruct all nodes on the path root_node --> to_node.\n",
"\n",
" Parameters:\n",
" to_node: Node\n",
" Node at the end of the path.\n",
" parent: dict\n",
" Child - parent relationship between nodes in the search tree.\n",
" \n",
" Output:\n",
" path: deque\n",
" List with all the nodes along the path root_node --> to_node.\n",
" \"\"\"\n",
" path = deque()\n",
" current = to_node\n",
" while current is not None:\n",
" path.appendleft(current)\n",
" current = parent[current]\n",
" return path\n"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [],
"source": [
"def find_target_bfs(initial, final):\n",
" \"\"\"Find a solutions of the 8-puzzle when given an initial configuration by using the BFS algorithm.\n",
" \n",
" Parameters:\n",
" initial: NodeBFS\n",
" Initial state of the 8-puzzle.\n",
" final: NodeBFS\n",
" Final state of the 8-puzzle.\n",
"\n",
" Output:\n",
" n: number of visited nodes\n",
" deque: All nodes that lie on the path from the root node to the final node.\n",
" \"\"\"\n",
" q = Queue() # FIFO queue\n",
" q.put(initial)\n",
" parent = {initial: None} # dictionary \n",
" \n",
" n = 1 # Counter for number of nodes that have been put into the queue.\n",
"\n",
" if initial == final:\n",
" return n, reconstruct_path(initial, parent)\n",
" \n",
" \n",
" while not q.empty():\n",
" node = q.get()\n",
" for child in node.next_nodes():\n",
" if child not in parent:\n",
" n += 1\n",
" q.put(child)\n",
" parent[child] = node \n",
" if child == final:\n",
" return n, reconstruct_path(child, parent)\n",
"\n",
" \n",
" return -1, []"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def state_difference(state, final_state):\n",
" \"\"\"Compute the difference of two states of the 8 puzzle.\n",
"\n",
" Parameters:\n",
" state: np.ndarray\n",
" State of the 8 puzzle for which to compute the distance to the final state.\n",
" final_state: np.ndarray\n",
" Solved state of the 8 puzzle.\n",
" \n",
" Output:\n",
" int: The difference of the two states. The difference is computed by the number digits in state\n",
" that are *not* in the same position in final_state.\n",
" \"\"\"\n",
" return np.sum((state != 0) & (state != final_state))"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"class NodeGreedy(Node): \n",
" def __init__(self, state, estimated_cost):\n",
" \"\"\"Initialiser of the class\n",
" \n",
" Parameters:\n",
" state: np.ndarray\n",
" State array representing a certain digit arrangement of the 8 puzzle. The state is\n",
" forwarded to the base class.\n",
" estimated_cost: int\n",
" An estimate of the cost of getting from the current state to the solved state.\n",
" \n",
" Output:\n",
" No output. Initialises the attribute variables of the class.\n",
" \"\"\"\n",
" self.estimated_cost = estimated_cost\n",
" super().__init__(state)\n",
"\n",
" def __repr__(self):\n",
" return f\"NodeGreedy({self.state}, {self.estimated_cost})\"\n",
"\n",
" \n",
" def __lt__(self, rhs):\n",
" \"\"\"Test if a node instance is 'smaller' than another instance.\n",
" \n",
" Parameters:\n",
" rhs: NodeAstar\n",
" Other node instance.\n",
" \n",
" Output: bool\n",
" True in case the node has a smaller estimated cost to reach the final state as the other node else False.\n",
" \n",
" The < binary operator is needed to be able to use instances of this class with PriorityQueue. \n",
" \"\"\"\n",
" return self.estimated_cost < rhs.estimated_cost\n",
"\n",
" def next_nodes(self, final, cost_estimator: callable):\n",
" \"\"\"Generate other state nodes from the current node.\n",
" \n",
" Parameters:\n",
" final: NodeGreedy\n",
" A node representing the solved state of the puzzle.\n",
" estimator: callable\n",
" Cost function to estimated the cost from getting the generated state to the solved state.\n",
" \n",
" Output:\n",
" Generator[NodeGreedy, None, None]. \n",
" Yields a node representing a state of the puzzle that can be generated through \n",
" a single move of the empty spot in the current state.\n",
" \"\"\"\n",
" for pos_new in self._next_positions():\n",
" buffer = self._make_new_state(pos_new)\n",
" yield type(self)(buffer.copy(), cost_estimator(buffer, \n",
" final.state))"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"def informed_search(initial, final, cost_estimator: callable):\n",
" \"\"\"Find path from initial to final node.\n",
" \n",
" Parameters:\n",
" initial: Node[Greedy, Astar]\n",
" Node representing the initial state of the 8 puzzle.\n",
" final: Node[Greedy, Astar]\n",
" Node representing the solved state of the 8 puzzle.\n",
" cost_estimator: callable\n",
" Function to estimate the cost to get from some node to the solved state.\n",
" \n",
" Output:\n",
" deque: All nodes that lie on the path from the root node to the final node.\n",
" \"\"\"\n",
" pq = PriorityQueue()\n",
" pq.put(initial)\n",
" parent = {initial: None} # dictionary\n",
" \n",
" n = 1 # Counter for the number of nodes that have been put into the queue.\n",
"\n",
" if np.array_equal(initial.state, final.state): # == is not possible because == includes cost functions also\n",
" return n, reconstruct_path(initial, parent)\n",
"\n",
" \n",
" while not pq.empty():\n",
" current = pq.get()\n",
" for child in current.next_nodes(final, cost_estimator):\n",
" if child not in parent:\n",
" n += 1\n",
" pq.put(child)\n",
" parent[child] = current\n",
" if np.array_equal(child.state, final.state): # == is not possible because == includes cost functions also\n",
" return n, reconstruct_path(child, parent)\n",
" \n",
" return -1, []"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"class NodeAstar(Node):\n",
" def __init__(self, state, accumulated_cost, estimated_cost):\n",
" \"\"\"Initialiser of the class.\n",
" \n",
" Parameters:\n",
" state: np.ndarray \n",
" State array representing a certain digit arrangement of the 8 puzzle. The state is \n",
" forwarded to the base class.\n",
" accumulated_cost: int\n",
" Number of steps executed so far.\n",
" estimated_cost: int>\n",
" Estimated cost for getting from the current state to the solved state of the puzzle.\n",
" \n",
" Output:\n",
" No output. Initialises the attribute variables of the class.\n",
" \"\"\"\n",
" self.accumulated_cost, self.estimated_cost = accumulated_cost, \\\n",
" estimated_cost\n",
" self.total_estimated_cost = accumulated_cost + estimated_cost\n",
" super().__init__(state)\n",
"\n",
" def __repr__(self):\n",
" return f\"NodeAstar({self.state}, {self.accumulated_cost}, \\\n",
" {self.estimated_cost})\"\n",
" \n",
" def __lt__(self, rhs):\n",
" \"\"\"Test if a node instance is 'smaller' than another instance.\n",
" \n",
" Parameters:\n",
" rhs: NodeAstar\n",
" Other node instance.\n",
" \n",
" Output: bool\n",
" True in case the node has a smaller *total estimated cost* to reach the final state as the other node else False.\n",
" >\n",
" The < binary operator is needed to be able to use instances of this class with PriorityQueue. \n",
" \"\"\"\n",
" return self.total_estimated_cost < rhs.total_estimated_cost\n",
"\n",
" def next_nodes(self, final, estimator):\n",
" for pos_new in self._next_positions():\n",
" buffer = self._make_new_state(pos_new)\n",
" yield type(self)(buffer.copy(), self.accumulated_cost + 1, \n",
" estimator(buffer, final.state))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Meine Bearbeitung"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Aufgabe 1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Die Summe der euklidischen/manhatten Abstände ist keine zulässige Heuristik. Auch hier muss die 0 ausgeschlossen werden."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import math as m\n",
"\n",
"def manhatten_distance(state, final_state):\n",
" \"\"\"Compute the manhattan distance between two arrays of identical shape\"\"\"\n",
" distance = 0\n",
" for i, row in enumerate(state):\n",
" for j, value in enumerate(row):\n",
" if value != 0:\n",
" x, y = np.where(final_state == value)\n",
" distance += abs(x[0]-i) + abs(y[0]-j)\n",
" #print(f\"Distance for value {value} is {abs(x[0]-i) + abs(y[0]-j)}\")\n",
" return distance\n",
"\n",
"def euclidian_distance(state, final_state):\n",
" \"\"\"Compute the euclidian distance between two arrays of identical shape\"\"\"\n",
" distance = 0\n",
" for i, row in enumerate(state):\n",
" for j, value in enumerate(row):\n",
" if value != 0:\n",
" x, y = np.where(final_state == value)\n",
" distance += m.sqrt(pow((x[0]-i), 2) + pow((y[0]-j),2))\n",
" #print(f\"Distance for value {value} is {m.sqrt(pow((x[0]-i), 2) + pow((y[0]-j),2))}\")\n",
" return distance"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"ARRAY_INITIAL = np.array(((4, 8, 3),\n",
" (7, 6, 2),\n",
" (5, 1, 0)), dtype=int)\n",
" \n",
"ARRAY_FINAl = np.array(((1, 3, 6),\n",
" (8, 0, 2),\n",
" (7, 4, 5)), dtype=int)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Anzahl falscher Positionen: 7 \n",
" Manhattan Abstand: 14 \n",
" Euklidischer Abstand: 11.30056307974577\n"
]
}
],
"source": [
"print(f\"Anzahl falscher Positionen: {state_difference(ARRAY_INITIAL, ARRAY_FINAl)} \\n \\\n",
" Manhattan Abstand: {manhatten_distance(ARRAY_INITIAL, ARRAY_FINAl)} \\n \\\n",
" Euklidischer Abstand: {euclidian_distance(ARRAY_INITIAL, ARRAY_FINAl)}\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"###### Greedy Suche mit Anzahl falscher Positionen\n",
" Besuchte Knoten: 490 \n",
" Länge des Pfades: 27\n",
"###### Greedy Suche mit Manhattan-Abstand\n",
" Besuchte Knoten: 83 \n",
" Länge des Pfades: 33\n",
"###### Greedy Suche mit Euklidischem-Abstand\n",
" Besuchte Knoten: 333 \n",
" Länge des Pfades: 41\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"###### Astar Suche mit Anzahl falscher Positionen\n",
" Besuchte Knoten: 1048 \n",
" Länge des Pfades: 17\n",
"###### Astar Suche mit Manhattan-Abstand\n",
" Besuchte Knoten: 107 \n",
" Länge des Pfades: 17\n",
"###### Astar Suche mit Euklidischem-Abstand\n",
" Besuchte Knoten: 143 \n",
" Länge des Pfades: 17\n"
]
}
],
"source": [
"manhattan_greedy_start = NodeGreedy(ARRAY_INITIAL, manhatten_distance(ARRAY_INITIAL, ARRAY_FINAl))\n",
"manhattan_greedy_final = NodeGreedy(ARRAY_FINAl, 0)\n",
"euclidian_greedy_start = NodeGreedy(ARRAY_INITIAL, euclidian_distance(ARRAY_INITIAL, ARRAY_FINAl))\n",
"eucilidan_greedy_final = NodeGreedy(ARRAY_FINAl, 0)\n",
"difference_greedy_start = NodeGreedy(ARRAY_INITIAL, state_difference(ARRAY_INITIAL, ARRAY_FINAl))\n",
"difference_greedy_final = NodeGreedy(ARRAY_FINAl, 0)\n",
"difference_greedy_n, difference_greedy_path = informed_search(difference_greedy_start, difference_greedy_final, state_difference)\n",
"print(f\"###### Greedy Suche mit Anzahl falscher Positionen\\n \\\n",
"Besuchte Knoten: {difference_greedy_n} \\n \\\n",
"Länge des Pfades: {len(difference_greedy_path)}\")\n",
"manhatten_greedy_n, manhattan_greedy_path = informed_search(manhattan_greedy_start, manhattan_greedy_final, manhatten_distance)\n",
"print(f\"###### Greedy Suche mit Manhattan-Abstand\\n \\\n",
"Besuchte Knoten: {manhatten_greedy_n} \\n \\\n",
"Länge des Pfades: {len(manhattan_greedy_path)}\")\n",
"euclidian_greedy_n, euclidian_greedy_path = informed_search(euclidian_greedy_start, eucilidan_greedy_final, euclidian_distance)\n",
"print(f\"###### Greedy Suche mit Euklidischem-Abstand\\n \\\n",
"Besuchte Knoten: {euclidian_greedy_n} \\n \\\n",
"Länge des Pfades: {len(euclidian_greedy_path)}\")\n",
"\n",
"manhattan_Astar_start = NodeAstar(ARRAY_INITIAL, 0, manhatten_distance(ARRAY_INITIAL, ARRAY_FINAl))\n",
"manhattan_Astar_final = NodeAstar(ARRAY_FINAl, -1, 0)\n",
"euclidian_Astar_start = NodeAstar(ARRAY_INITIAL, 0, euclidian_distance(ARRAY_INITIAL, ARRAY_FINAl))\n",
"eucilidan_Astar_final = NodeAstar(ARRAY_FINAl, -1, 0)\n",
"difference_Astar_start = NodeAstar(ARRAY_INITIAL, 0, state_difference(ARRAY_INITIAL, ARRAY_FINAl))\n",
"difference_Astar_final = NodeAstar(ARRAY_FINAl, -1, 0)\n",
"difference_Astar_n, difference_Astar_path = informed_search(difference_Astar_start, difference_Astar_final, state_difference)\n",
"print(f\"###### Astar Suche mit Anzahl falscher Positionen\\n \\\n",
"Besuchte Knoten: {difference_Astar_n} \\n \\\n",
"Länge des Pfades: {len(difference_Astar_path)}\")\n",
"manhatten_Astar_n, manhattan_Astar_path = informed_search(manhattan_Astar_start, manhattan_Astar_final, manhatten_distance)\n",
"print(f\"###### Astar Suche mit Manhattan-Abstand\\n \\\n",
"Besuchte Knoten: {manhatten_Astar_n} \\n \\\n",
"Länge des Pfades: {len(manhattan_Astar_path)}\")\n",
"euclidian_Astar_n, euclidian_Astar_path = informed_search(euclidian_Astar_start, eucilidan_Astar_final, euclidian_distance)\n",
"print(f\"###### Astar Suche mit Euklidischem-Abstand\\n \\\n",
"Besuchte Knoten: {euclidian_Astar_n} \\n \\\n",
"Länge des Pfades: {len(euclidian_Astar_path)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Aufgabe 2"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Tiefe: 2 - Anzahl Anfangszustände: 12\n",
"Tiefe: 4 - Anzahl Anfangszustände: 32\n",
"Tiefe: 6 - Anzahl Anfangszustände: 98\n",
"Tiefe: 8 - Anzahl Anfangszustände: 201\n",
"Tiefe: 10 - Anzahl Anfangszustände: 344\n",
"Tiefe: 12 - Anzahl Anfangszustände: 386\n",
"Tiefe: 14 - Anzahl Anfangszustände: 384\n",
"Tiefe: 16 - Anzahl Anfangszustände: 273\n",
"Tiefe: 18 - Anzahl Anfangszustände: 166\n",
"Tiefe: 20 - Anzahl Anfangszustände: 73\n"
]
}
],
"source": [
"import time\n",
"time.perf_counter_ns()\n",
"import yaml\n",
"with open(\"initial_states.yaml\", \"r\") as f:\n",
" intial_states = yaml.safe_load(f)\n",
"for d, states in intial_states.items():\n",
" print(f\"Tiefe: {d:3d} - Anzahl Anfangszustände: {len(states):4d}\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"def time_algorithm(intial_states, node_type_names, heuristics, heuristic_names):\n",
" algorithm = []\n",
" used_heuristic = []\n",
" depth = []\n",
" runtime = []\n",
" visited_node = []\n",
" path_length = []\n",
" for node_type_name in node_type_names:\n",
" print(f\"Beginning measurement of {node_type_name}...\")\n",
" if node_type_name == \"BFS\":\n",
" heuristic_helper = [(None, \"Keine\")]\n",
" else:\n",
" heuristic_helper = zip(heuristics, heuristic_names)\n",
" for heuristic, heuristic_name in heuristic_helper:\n",
" print(f\"For heuristic: {heuristic_name} ...\")\n",
" for current_depth, problems in intial_states.items():\n",
" print(f\"In depth: {current_depth} ...\")\n",
" for problem in problems:\n",
" start_array = np.asarray(problem[0], dtype=int)\n",
" final_array = np.asarray(problem[1], dtype=int)\n",
" if node_type_name == \"BFS\":\n",
" start = NodeBFS(start_array)\n",
" final = NodeBFS(final_array)\n",
" start_time = time.perf_counter_ns()\n",
" n, path = find_target_bfs(start, final)\n",
" final_time = time.perf_counter_ns()\n",
" if node_type_name == \"Greedy\":\n",
" start = NodeGreedy(start_array, heuristic(start_array, final_array))\n",
" final = NodeGreedy(final_array, 0)\n",
" start_time = time.perf_counter_ns()\n",
" n, path = informed_search(start, final, heuristic)\n",
" final_time = time.perf_counter_ns()\n",
" if node_type_name == \"A*\":\n",
" start = NodeAstar(start_array, 0, heuristic(start_array, final_array))\n",
" final = NodeAstar(final_array, -1, 0)\n",
" start_time = time.perf_counter_ns()\n",
" n, path = informed_search(start, final, heuristic)\n",
" final_time = time.perf_counter_ns()\n",
" algorithm.append(node_type_name)\n",
" used_heuristic.append(heuristic_name)\n",
" depth.append(current_depth)\n",
" runtime.append(final_time - start_time)\n",
" visited_node.append(n)\n",
" path_length.append(len(path))\n",
" print(f\"Finished depth: {current_depth}.\")\n",
" print(f\"Finished heuristic: {heuristic_name}.\")\n",
" print(f\"Finished {node_type_name}.\")\n",
" return algorithm, used_heuristic, depth, visited_node, path_length, runtime\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Beginning measurement of BFS...\n",
"For heuristic: Keine ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Keine.\n",
"Finished BFS.\n",
"Beginning measurement of Greedy...\n",
"For heuristic: Difference ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Difference.\n",
"For heuristic: Euklidisch ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Euklidisch.\n",
"For heuristic: Manhattan ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Manhattan.\n",
"Finished Greedy.\n",
"Beginning measurement of A*...\n",
"For heuristic: Difference ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Difference.\n",
"For heuristic: Euklidisch ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Euklidisch.\n",
"For heuristic: Manhattan ...\n",
"In depth: 2 ...\n",
"Finished depth: 2.\n",
"In depth: 4 ...\n",
"Finished depth: 4.\n",
"In depth: 6 ...\n",
"Finished depth: 6.\n",
"In depth: 8 ...\n",
"Finished depth: 8.\n",
"In depth: 10 ...\n",
"Finished depth: 10.\n",
"In depth: 12 ...\n",
"Finished depth: 12.\n",
"In depth: 14 ...\n",
"Finished depth: 14.\n",
"In depth: 16 ...\n",
"Finished depth: 16.\n",
"In depth: 18 ...\n",
"Finished depth: 18.\n",
"In depth: 20 ...\n",
"Finished depth: 20.\n",
"Finished heuristic: Manhattan.\n",
"Finished A*.\n"
]
}
],
"source": [
"node_type_names = [\"BFS\", \"Greedy\", \"A*\"]\n",
"heuristics = [state_difference, manhatten_distance, euclidian_distance]\n",
"heuristic_names = [\"Difference\", \"Euklidisch\", \"Manhattan\"]\n",
"\n",
"algorithm, used_heuristic, depth, visited_node, path_length, runtime = time_algorithm(intial_states, node_type_names, heuristics, heuristic_names)\n",
"\n",
"\n",
"\n",
"results = pd.DataFrame({\n",
" \"Algorithmus\": algorithm,\n",
" \"Heuristik\": used_heuristic,\n",
" \"Tiefe\": depth,\n",
" \"Besuchte Knoten\": visited_node,\n",
" \"Pfadlaenge\": path_length,\n",
" \"Zeit\": runtime,\n",
"})\n"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"mask1 = results[\"Heuristik\"] == \"Euklidisch\"\n",
"mask2 = results[\"Heuristik\"] == \"Manhattan\"\n",
"\n",
"results.loc[mask1, \"Heuristik\"] = \"Manhattan\"\n",
"results.loc[mask2, \"Heuristik\"] = \"Euklidisch\""
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 13783 entries, 0 to 13782\n",
"Data columns (total 6 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Algorithmus 13783 non-null object\n",
" 1 Heuristik 13783 non-null object\n",
" 2 Tiefe 13783 non-null int64 \n",
" 3 Besuchte Knoten 13783 non-null int64 \n",
" 4 Pfadlaenge 13783 non-null int64 \n",
" 5 Zeit 13783 non-null int64 \n",
"dtypes: int64(4), object(2)\n",
"memory usage: 646.2+ KB\n"
]
}
],
"source": [
"results = pd.read_csv(\"results.csv\").iloc[:, 1:]\n",
"results.info()"
]
},
{
"cell_type": "code",
"execution_count": 68,