-
johannes bilk authoredjohannes bilk authored
weights.py 3.96 KiB
import numpy as np
from numpy.typing import ArrayLike
def initializeWeights(size: tuple | int, scale: float = 1.0, init: str = 'random') -> ArrayLike:
"""
Initialize filter using a normal distribution with and a
standard deviation inversely proportional the square root of the number of units
"""
if init == 'random':
stddev = scale/np.sqrt(np.prod(size))
return np.random.normal(loc=0, scale=stddev, size=size)
elif init == 'ones':
return np.ones(size)
elif init == 'zeros':
return np.zeros(size)
else:
raise ValueError('not a valid init argument')
class Weights(object):
"""
the idea behind class is to combine everything an optimizer needs into one object
this way layers and optimizers don't need to take care of storing and providing
things like previous updates or cache
"""
__slots__ = ['_values', '_quantizedValues', 'prevValues', 'deltas', 'prevDeltas', 'cache', 'scale', 'maxValue', '_useQuantization']
def __init__(self, size: tuple | int, values: ArrayLike = None, init: str = 'random') -> None:
self._values = initializeWeights(size, init=init) if values is None else values
self.prevValues = None
self.deltas = np.zeros(size)
self.prevDeltas = None
self.cache = None
self._quantizedValues = np.zeros(size)
self.scale = 1
self.maxValue = 0
self._useQuantization = False
@property
def values(self):
"""
Depending on the _useQuantized flag, return either the original
or quantized (and dequantized back) weight values for computation.
"""
if self._useQuantization:
return self.dequantize()
else:
return self._values
@values.setter
def values(self, newValues):
"""
Allow updates to the weight values directly.
"""
self._values = newValues
@property
def qualifiedName(self) -> tuple:
return self.__class__.__module__, self.__class__.__name__
def toDict(self) -> dict:
saveDict = {}
saveDict['size'] = self._values.shape
saveDict['values'] = self._values.tolist()
saveDict['deltas'] = self.deltas.tolist()
if self.prevValues is not None:
saveDict['prevValues'] = self.prevValues.tolist()
saveDict['cache'] = {}
if type(self.cache) == dict:
saveDict['cache']['values'] = {}
for key in self.cache:
saveDict['cache']['values'][key] = self.cache[key].tolist()
saveDict['cache']['type'] = 'dict'
elif type(self.cache) == np.ndarray:
saveDict['cache']['values'] = self.cache.tolist()
saveDict['cache']['type'] = 'np.ndarray'
return saveDict
def fromDict(self, loadDict: dict) -> None:
self._values = np.array(loadDict['values'])
self.deltas = np.array(loadDict['deltas'])
if 'prevValues' in loadDict:
self.prevValues = np.array(loadDict['prevValues'])
if loadDict['cache']['type'] == 'np.ndarray':
self.cache = np.array(loadDict['cache']['values'])
elif loadDict['cache']['type'] == 'dict':
self.cache = {}
for key in loadDict['cache']['values']:
self.cache[key] = np.array(loadDict['cache']['values'][key])
def quantize(self, bits: int = 8, scheme: str = "symmetric"):
"""
Quantizes the weight values to a specified bit width.
"""
self.maxValue = np.max(np.abs(self._values))
self.scale = (2 ** bits - 1) / self.maxValue
self._quantizedValues = np.round(self._values * self.scale).astype(np.int32)
self._useQuantization = True
def dequantize(self):
"""
Dequantizes the weight values back to floating point.
"""
if self._useQuantization:
return self._quantizedValues.astype(np.float32) / self.scale
return self._values