Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import sys
from matplotlib import pyplot as plt
from nn.linear import Linear, Dropout, Flatten
from nn.convolution2D import Convolution2D, Unsqueeze
from nn.optim import SGD, SGDMomentum, NesterovMomentum, AdaGrad, AdaDelta, RMSprop, Adam
from nn.scheduler import ExponentialLR, SteppedLR, CyclicalLR
from nn.sequential import Sequential
from nn.parallel import Parallel
from nn.loss import CrossEntropyLoss, MSELoss, NLLLoss, MAELoss, FocalLoss
from nn.activation import Tanh, SoftMax, Sigmoid, SoftPlus, Relu, Elu, LeakyRelu, SoftSign, Identity
from data.data import Data
from utility.timer import Time
from nn.observable import NetworkObservables
from metric.confusionMatrix import ConfusionMatrix
from nn.batchNorm import BatchNorm1D, BatchNorm2D
from utility.progressbar import Progressbar
from settings.networkSettings import NetworkSettings
def actiPicker(acti: str):
if acti == 'tanh':
return Tanh()
elif acti == 'elu':
return Elu()
elif acti == 'relu':
return Relu()
elif acti == 'lrelu':
return LeakyRelu()
elif acti == 'sigmoid':
return Sigmoid()
elif acti == 'id':
return Identity()
elif acti == 'softplus':
return SoftPlus()
elif acti == 'softmax':
return SoftMax()
elif acti == 'softsign':
return SoftSign()
if __name__ == "__main__":
settings = NetworkSettings()
try:
configFile = sys.argv[1]
settings.getConfig(configFile)
settings.setConfig()
except IndexError:
pass
print(settings)
# Initialize a timer to measure the runtime of different parts of the code
timer = Time()
# Loading some test data
print("Importing data...\n")
timer.start()
data = Data(trainAmount=settings['trainAmount'], evalAmount=settings['validAmount'], batchSize=settings['batchSize'], kFold=settings['kFold'], dataPath=settings['dataPath'], normalize=settings['normalize'])
#data.generateTestData(settings['numCategories'])
data.inputFeatures(*settings['features'])
data.importData(*settings['dataFiles'])
print(data)
timer.record("Importing Data")
# Create and initialize the Network
print("Setting up network")
timer.start()
# Configuring number of Neurons
# Setting up Convolution
network = Sequential()
if len(settings['convolutions']) > 0:
neurons = 0
convolutions = Parallel()
for key in settings['convolutions']:
conv = Sequential()
kernels = settings['kernelSize'][key]
channels = settings['channels'][key]
activations = settings['activationConv'][key]
norms = settings['convNorm'][key]
xSize, ySize = 9, 9
for i, (inChan, outChan, kern, acti, norm) in enumerate(zip(channels, channels[1:], kernels, activations, norms)):
if i == 0:
conv.append(Unsqueeze((inChan, xSize, ySize)))
xSize = int((xSize - kern[0])/1 + 1)
ySize = int((ySize - kern[0])/1 + 1)
conv.append(Convolution2D(inChan, outChan, kern))
conv.append(actiPicker(acti))
if norm is True:
conv.append(BatchNorm2D((outChan, xSize, ySize)))
neurons += (xSize * ySize * outChan)
convolutions.append(conv)
network.append(convolutions)
else:
neurons = settings['numNeurons'][0]
# Adding Linear Layer
network.append(Flatten())
# this code is a bit ugly and I am not sure it will work under all conditions
for i, (inFeat, outFeat, drop, acti, norm) in enumerate(zip(settings['numNeurons'], settings['numNeurons'][1:], settings['dropoutRate'], settings['activationLin'], settings['linearNorm'])):
if i == 0:
network.append(Linear(neurons,outFeat))
network.append(Dropout(outFeat,drop))
network.append(actiPicker(acti))
if norm is True:
network.append(BatchNorm1D(outFeat))
elif i == settings['numLayers'] - 1:
network.append(Linear(inFeat,settings['numCategories']))
network.append(SoftMax())
else:
network.append(Linear(inFeat,outFeat))
network.append(Dropout(outFeat,drop))
network.append(actiPicker(acti))
if norm is True:
network.append(BatchNorm1D(outFeat))
print(network)
timer.record('Network setup')
# Setting up loss func
print("Setting up loss/optimizer")
timer.start()
if settings['lossFunction'] == 'entropy':
lossFunc = CrossEntropyLoss()
elif settings['lossFunction'] == 'nllloss':
lossFunc = NLLLoss()
elif settings['lossFunction'] == 'focalloss':
lossFunc = FocalLoss()
elif settings['lossFunction'] == 'mseloss':
lossFunc = MSELoss()
elif settings['lossFunction'] == 'maeloss':
lossFunc = MAELoss()
# Setting up opimizer
if settings['optim'] == 'sgd':
optim = SGD(network, settings['learningRate'])
elif settings['optim'] == 'momentum':
optim = SGDMomentum(network, settings['learningRate'], settings['momentum'])
elif settings['optim'] == 'nesterov':
optim = NesterovMomentum(network, settings['learningRate'], settings['momentum'])
elif settings['optim'] == 'adagrad':
optim = AdaGrad(network, settings['learningRate'])
elif settings['optim'] == 'adadelta':
optim = AdaDelta(network, settings['learningRate'])
elif settings['optim'] == 'rmsprop':
optim = RMSprop(network, settings['learningRate'])
elif settings['optim'] == 'adam':
optim = Adam(network, settings['learningRate'])
# LR scheduler
scheduler = None
if settings['scheduler'] == 'exponential':
scheduler = ExponentialLR(optim, settings['decayrate'])
elif settings['scheduler'] == 'stepped':
scheduler = SteppedLR(optim, settings['decayrate'], settings['stepSize'])
elif settings['scheduler'] == 'else':
scheduler = CyclicalLR(optim, 1/5, 15, 5)
timer.record('Network setup')
print(optim)
print(lossFunc)
# Beginn training
print("Beginn training...")
timer.start()
metrics = NetworkObservables(settings['epochs'])
epochs = settings['epochs']
for i in range(settings['epochs']):
data.trainMode()
network.train()
length = len(data.train)
bar = Progressbar(f'epoch {str(i+1).zfill(len(str(epochs)))}/{epochs}', length, 55)
losses = []
for item in data.train:
inputs = item['data']
labels = item['labels']
prediction = network(inputs)
losses.append(lossFunc(prediction, labels))
gradient = lossFunc.backward()
optim.step(gradient)
bar.step()
data.evalMode()
network.eval()
accuracies = []
valLosses = []
for item in data.train:
inputs = item['data']
labels = item['labels']
prediction = network(inputs)
valLosses.append(lossFunc(prediction, labels))
accuracies.append(np.sum(prediction.argmax(1) == labels.argmax(1)) / len(prediction))
bar.step()
if scheduler is not None:
scheduler.step()
metrics.update('losses', np.mean(losses))
metrics.update('validation', np.mean(valLosses))
metrics.update('accuracy', np.mean(accuracies))
metrics.update('learningRate', optim.learningRate)
metrics.print()
metrics.step()
data.fold()
#bar.finish()
timer.record('Training')
# plotting training metrics
fig, ax = plt.subplots()
ax3 = ax.twinx()
lns1 = ax.plot(metrics.losses.values, label='Train Loss')
lns2 = ax.plot(metrics.validation.values, label='Eval Loss')
lns3 = ax.plot(metrics.accuracy.values, label='Accuracy')
lns4 = ax3.plot(metrics.learningRate.values, label='learning rate', color='tab:gray', ls='--')
lns = lns1+lns2+lns3+lns4
labs = [lab.get_label() for lab in lns]
ax.legend(lns, labs)
ax.grid(ls=':')
plt.show()
# evaluating on test data
print("\nMaking predictions...")
timer.start()
confusion = ConfusionMatrix(settings['numCategories'])
network.eval()
length = len(data.eval)
bar = Progressbar('evaluation', length)
for item in data.eval:
inputs = item['data']
labels = item['labels']
prediction = network(inputs)
confusion.update(prediction, labels)
bar.step()
# Calculate and print confusion matrix
confusion.percentages()
confusion.calcScores()
timer.record("Prediction")
print()
print(confusion)
print()
# Print total execution time
print(timer)