Skip to content
Snippets Groups Projects
backend.py 32.5 KiB
Newer Older
johannes bilk's avatar
johannes bilk committed
from abc import ABC, abstractmethod
import numpy as np


class BackendInterface(ABC):
    # init

    @abstractmethod
    def array(self, x):
        raise NotImplementedError()
    
    @abstractmethod
    def copy(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def zeros(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def ones(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def zeros_like(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def ones_like(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def arange(self, *args, **kwargs):
        raise NotImplementedError()

    # double tensor

    @abstractmethod
    def add(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def subtract(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def multiply(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def divide(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def matmul(self, x, y, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def dot(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def power(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    # single tensor

    @abstractmethod
    def square(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def sqrt(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def log(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def exp(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def sin(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def cos(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def tan(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def sinh(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def cosh(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def tanh(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def abs(self, x, *args, **kwargs):
        raise NotImplementedError()

    # signs

    @abstractmethod
    def sign(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def positive(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def negative(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def negative(self, x, *args, **kwargs):
        raise NotImplementedError()

    # Compare

    @abstractmethod
    def equal(self, x, y, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def not_equal(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def less(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def less_equal(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def greater(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def greater_equal(self, x, y, *args, **kwargs):
        raise NotImplementedError()

    # logic
    
    @abstractmethod
    def logical_and(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def logical_or(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def logical_xor(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def logical_not(self, x, *args, **kwargs):
        raise NotImplementedError()

    # shaping

    @abstractmethod
    def flatten(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def reshape(self, x, *args, **kwargs):
        raise NotImplementedError()

    # broadcasting

    @abstractmethod
    def broadcast_to(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def repeat(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def tile(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def concatenate(self, x, *args, **kwargs):
        raise NotImplementedError()
johannes bilk's avatar
johannes bilk committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

    @abstractmethod
    def split(self, x, *args, **kwargs):
        raise NotImplementedError()

    # reduce

    @abstractmethod
    def sum(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def prod(self, x, *args, **kwargs):
        raise NotImplementedError()

    # min/max etc

    @abstractmethod
    def max(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def min(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def mean(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def var(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def std(self, x, *args, **kwargs):
        raise NotImplementedError()

    # others

    @abstractmethod
    def pad(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def insert(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def transpose(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def where(self, x, *args, **kwargs):
        raise NotImplementedError()
    
    @abstractmethod
    def cumsum(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def cumprod(self, x, *args, **kwargs):
        raise NotImplementedError()

    # not working yet

    @abstractmethod
    def as_strided(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def sliding_window_view(self, x, *args, **kwargs):
        raise NotImplementedError()

    @abstractmethod
    def einsum(self, subscript, x, y, *args, **kwargs):
        raise NotImplementedError()


class NumpyBackend(BackendInterface):
    import numpy as np
    # init

    def array(self, x):
        return self.np.array(x)

    def copy(self, x, *args, **kwargs):
        return self.np.copy(x, *args, **kwargs)

    def zeros(self, x, *args, **kwargs):
        return self.np.zeros(x, *args, **kwargs)

    def ones(self, x, *args, **kwargs):
        return self.np.ones(x, *args, **kwargs)

    def zeros_like(self, x, *args, **kwargs):
        return self.np.zeros_like(x, *args, **kwargs)

    def ones_like(self, x, *args, **kwargs):
        return self.np.ones_like(x, *args, **kwargs)
    
    def arange(self, *args, **kwargs):
        return self.np.arange(*args, **kwargs)

    # double tensor

    def add(self, x, y, *args, **kwargs):
        return self.np.add(x, y, *args, **kwargs)

    def subtract(self, x, y, *args, **kwargs):
        return self.np.subtract(x, y, *args, **kwargs)

    def multiply(self, x, y, *args, **kwargs):
        return self.np.multiply(x, y, *args, **kwargs)

    def divide(self, x, y, *args, **kwargs):
        return self.np.divide(x, y, *args, **kwargs)

    def matmul(self, x, y, *args, **kwargs):
        return self.np.matmul(x, y, *args, **kwargs)
    
    def dot(self, x, y, *args, **kwargs):
        return self.np.dot(x, y, *args, **kwargs)

    def power(self, x, y, *args, **kwargs):
        return self.np.power(x, y, *args, **kwargs)

    # single tensor

    def square(self, x, *args, **kwargs):
        return self.np.square(x, *args, **kwargs)

    def sqrt(self, x, *args, **kwargs):
        return self.np.sqrt(x, *args, **kwargs)

    def log(self, x, *args, **kwargs):
        return self.np.log(x, *args, **kwargs)
    
    def exp(self, x, *args, **kwargs):
        return self.np.exp(x, *args, **kwargs)

    def sin(self, x, *args, **kwargs):
        return self.np.sin(x, *args, **kwargs)

    def cos(self, x, *args, **kwargs):
        return self.np.cos(x, *args, **kwargs)

    def tan(self, x, *args, **kwargs):
        return self.np.tan(x, *args, **kwargs)

    def sinh(self, x, *args, **kwargs):
        return self.np.sinh(x, *args, **kwargs)

    def cosh(self, x, *args, **kwargs):
        return self.np.cosh(x, *args, **kwargs)

    def tanh(self, x, *args, **kwargs):
        return self.np.tanh(x, *args, **kwargs)

    def abs(self, x, *args, **kwargs):
        return self.np.abs(x, *args, **kwargs)
    
    # signs

    def sign(self, x, *args, **kwargs):
        return self.np.sign(x, *args, **kwargs)
    
    def positive(self, x, *args, **kwargs):
        return self.np.positive(x, *args, **kwargs)
    
    def negative(self, x, *args, **kwargs):
        return self.np.negative(x, *args, **kwargs)
    
    # compare

    def equal(self, x, y, *args, **kwargs):
        return self.np.equal(x, y, *args, **kwargs)

    def not_equal(self, x, y, *args, **kwargs):
        return self.np.not_equal(x, y, *args, **kwargs)

    def less(self, x, y, *args, **kwargs):
        return self.np.less(x, y, *args, **kwargs)

    def less_equal(self, x, y, *args, **kwargs):
        return self.np.less_equal(x, y, *args, **kwargs)

    def greater(self, x, y, *args, **kwargs):
        return self.np.greater(x, y, *args, **kwargs)

    def greater_equal(self, x, y, *args, **kwargs):
        return self.np.greater_equal(x, y, *args, **kwargs)

    # logic
    
    def logical_and(self, x, *args, **kwargs):
        return self.np.logical_and(x, *args, **kwargs)
    
    def logical_or(self, x, *args, **kwargs):
        return self.np.logical_or(x, *args, **kwargs)

    def logical_xor(self, x, *args, **kwargs):
        return self.np.logical_xor(x, *args, **kwargs)
    
    def logical_not(self, x, *args, **kwargs):
        return self.np.logical_not(x, *args, **kwargs)
    
    # shaping

    def flatten(self, x, **kwargs):
        return self.np.reshape(x, -1, **kwargs)

    def reshape(self, x, *args, **kwargs):
        return self.np.reshape(x, *args, **kwargs)

    # broadcasting

    def broadcast_to(self, x, *args, **kwargs):
        return self.np.broadcast_to(x, *args, **kwargs)

    def repeat(self, x, *args, **kwargs):
        return self.np.repeat(x, *args, **kwargs)

    def tile(self, x, *args, **kwargs):
        return self.np.tile(x, *args, **kwargs)

    def concatenate(self, x, *args, **kwargs):
        return self.np.concatenate(x, *args, **kwargs)
    
    def split(self, x, *args, **kwargs):
        return self.np.split(x, *args, **kwargs)

    # reduce

    def sum(self, x, *args, **kwargs):
        return self.np.sum(x, *args, **kwargs)

    def prod(self, x, *args, **kwargs):
        return self.np.prod(x, *args, **kwargs)

    # min/max etc

    def max(self, x, *args, **kwargs):
        return self.np.max(x, *args, **kwargs)

    def min(self, x, *args, **kwargs):
        return self.np.min(x, *args, **kwargs)

    def mean(self, x, *args, **kwargs):
        return self.np.mean(x, *args, **kwargs)

    def var(self, x, *args, **kwargs):
        return self.np.var(x, *args, **kwargs)

    def std(self, x, *args, **kwargs):
        return self.np.std(x, *args, **kwargs)

    # others

    def pad(self, x, *args, **kwargs):
        return self.np.pad(x, *args, **kwargs)

    def insert(self, x, *args, **kwargs):
        return self.np.insert(x, *args, **kwargs)

    def transpose(self, x, *args, **kwargs):
        return self.np.transpose(x, *args, **kwargs)

    def where(self, x, *args, **kwargs):
        return self.np.where(x, *args, **kwargs)

    def cumsum(self, x, *args, **kwargs):
        return self.np.cumsum(x, *args, **kwargs)

    def cumprod(self, x, *args, **kwargs):
        return self.np.cumprod(x, *args, **kwargs)

    # not working yet

    def as_strided(self, x, *args, **kwargs):
        return self.np.lib.stride_tricks.as_strided(x, *args, **kwargs)

    def sliding_window_view(self, x, *args, **kwargs):
        return self.np.lib.stride_tricks.sliding_window_view(x, *args, **kwargs)

    def einsum(self, subscript, x, y, *args, **kwargs):
        return self.np.einsum(subscript, x, y, *args, **kwargs)


class CupyBackend(BackendInterface):
    try:
        import cupy as cp
    except ImportError:
        pass

    # init

    def array(self, x):
        return self.cp.array(x)

    def copy(self, x, *args, **kwargs):
        return self.cp.copy(x, *args, **kwargs)

    def zeros(self, x, *args, **kwargs):
        return self.cp.zeros(x, *args, **kwargs)

    def ones(self, x, *args, **kwargs):
        return self.cp.ones(x, *args, **kwargs)

    def zeros_like(self, x, *args, **kwargs):
        return self.cp.zeros_like(x, *args, **kwargs)

    def ones_like(self, x, *args, **kwargs):
        return self.cp.ones_like(x, *args, **kwargs)
    
    def arange(self, *args, **kwargs):
        return self.cp.arange(*args, **kwargs)

    # double tensor

    def add(self, x, y, *args, **kwargs):
        return self.cp.add(x, y, *args, **kwargs)

    def subtract(self, x, y, *args, **kwargs):
        return self.cp.subtract(x, y, *args, **kwargs)

    def multiply(self, x, y, *args, **kwargs):
        return self.cp.multiply(x, y, *args, **kwargs)

    def divide(self, x, y, *args, **kwargs):
        return self.cp.divide(x, y, *args, **kwargs)

    def matmul(self, x, y, *args, **kwargs):
        return self.cp.matmul(x, y, *args, **kwargs)
    
    def dot(self, x, y, *args, **kwargs):
        return self.cp.dot(x, y, *args, **kwargs)

    def power(self, x, y, *args, **kwargs):
        return self.cp.power(x, y, *args, **kwargs)

    # single tensor

    def square(self, x, *args, **kwargs):
        return self.cp.square(x, *args, **kwargs)

    def sqrt(self, x, *args, **kwargs):
        return self.cp.sqrt(x, *args, **kwargs)

    def log(self, x, *args, **kwargs):
        return self.cp.log(x, *args, **kwargs)

    def exp(self, x, *args, **kwargs):
        return self.cp.exp(x, *args, **kwargs)

    def sin(self, x, *args, **kwargs):
        return self.cp.sin(x, *args, **kwargs)

    def cos(self, x, *args, **kwargs):
        return self.cp.cos(x, *args, **kwargs)

    def tan(self, x, *args, **kwargs):
        return self.cp.tan(x, *args, **kwargs)

    def sinh(self, x, *args, **kwargs):
        return self.cp.sinh(x, *args, **kwargs)

    def cosh(self, x, *args, **kwargs):
        return self.cp.cosh(x, *args, **kwargs)

    def tanh(self, x, *args, **kwargs):
        return self.cp.tanh(x, *args, **kwargs)

    def abs(self, x, *args, **kwargs):
        return self.cp.abs(x, *args, **kwargs)
    
    # signs

    def sign(self, x, *args, **kwargs):
        return self.cp.sign(x, *args, **kwargs)
    
    def positive(self, x, *args, **kwargs):
        return self.cp.positive(x, *args, **kwargs)
    
    def negative(self, x, *args, **kwargs):
        return self.cp.negative(x, *args, **kwargs)
    
    # compare

    def equal(self, x, y, *args, **kwargs):
        return self.cp.equal(x, y, *args, **kwargs)

    def not_equal(self, x, y, *args, **kwargs):
        return self.cp.not_equal(x, y, *args, **kwargs)

    def less(self, x, y, *args, **kwargs):
        return self.cp.less(x, y, *args, **kwargs)

    def less_equal(self, x, y, *args, **kwargs):
        return self.cp.less_equal(x, y, *args, **kwargs)

    def greater(self, x, y, *args, **kwargs):
        return self.cp.greater(x, y, *args, **kwargs)

    def greater_equal(self, x, y, *args, **kwargs):
        return self.cp.greater_equal(x, y, *args, **kwargs)
    # logic
    
    def logical_and(self, x, *args, **kwargs):
        return self.cp.logical_and(x, *args, **kwargs)
    
    def logical_or(self, x, *args, **kwargs):
        return self.cp.logical_or(x, *args, **kwargs)

    def logical_xor(self, x, *args, **kwargs):
        return self.cp.logical_xor(x, *args, **kwargs)
    
    def logical_not(self, x, *args, **kwargs):
        return self.cp.logical_not(x, *args, **kwargs)
    
    # shaping

    def flatten(self, x, **kwargs):
        return self.cp.reshape(x, -1, **kwargs)

    def reshape(self, x, *args, **kwargs):
        return self.cp.reshape(x, *args, **kwargs)

    # broadcasting

    def broadcast_to(self, x, *args, **kwargs):
        return self.cp.broadcast_to(x, *args, **kwargs)

    def repeat(self, x, *args, **kwargs):
        return self.cp.repeat(x, *args, **kwargs)

    def tile(self, x, *args, **kwargs):
        return self.cp.tile(x, *args, **kwargs)

    def concatenate(self, x, *args, **kwargs):
        return self.cp.concatenate(x, *args, **kwargs)
    
    def split(self, x, *args, **kwargs):
        return self.cp.split(x, *args, **kwargs)

    # reduce

    def sum(self, x, *args, **kwargs):
        return self.cp.sum(x, *args, **kwargs)

    def prod(self, x, *args, **kwargs):
        return self.cp.prod(x, *args, **kwargs)

    # min/max etc

    def max(self, x, *args, **kwargs):
        return self.cp.max(x, *args, **kwargs)

    def min(self, x, *args, **kwargs):
        return self.cp.min(x, *args, **kwargs)

    def mean(self, x, *args, **kwargs):
        return self.cp.mean(x, *args, **kwargs)

    def var(self, x, *args, **kwargs):
        return self.cp.var(x, *args, **kwargs)

    def std(self, x, *args, **kwargs):
        return self.cp.std(x, *args, **kwargs)

    # others

    def pad(self, x, *args, **kwargs):
        return self.cp.pad(x, *args, **kwargs)

    def insert(self, x, *args, **kwargs):
        return self.cp.insert(x, *args, **kwargs)
    
    def transpose(self, x, *args, **kwargs):
        return self.cp.negative(x, *args, **kwargs)

    def where(self, x, *args, **kwargs):
        return self.cp.where(x, *args, **kwargs)
    
    def cumsum(self, x, *args, **kwargs):
        return self.cp.cumsum(x, *args, **kwargs)

    def cumprod(self, x, *args, **kwargs):
        return self.cp.cumprod(x, *args, **kwargs)


    # not working yet

    def as_strided(self, x, *args, **kwargs):
        return self.cp.lib.stride_tricks.as_strided(x, *args, **kwargs)
    
    def sliding_window_view(self, x, *args, **kwargs):
        return self.cp.lib.stride_tricks.sliding_window_view(x, *args, **kwargs)

    def einsum(self, subscript, x, y, *args, **kwargs):
        return self.cp.einsum(subscript, x, y, *args, **kwargs)


class NumbaBackend(BackendInterface):
    from numba import jit
    # init

    @staticmethod
    @jit(nopython=True)
    def array(x):
        return np.array(x)

    @staticmethod
    @jit(nopython=True)
    def copy(x, *args, **kwargs):
        return np.copy(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def zeros(x, *args, **kwargs):
        return np.zeros(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def ones(x, *args, **kwargs):
        return np.ones(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def zeros_like(x, *args, **kwargs):
        return np.zeros_like(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def ones_like(x, *args, **kwargs):
        return np.ones_like(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def arange(*args, **kwargs):
        return np.arange(*args, **kwargs)

    # double tensor

    @staticmethod
    @jit(nopython=True)
    def add(x, y, *args, **kwargs):
        return np.add(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def subtract(x, y, *args, **kwargs):
        return np.subtract(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def multiply(x, y, *args, **kwargs):
        return np.multiply(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def divide(x, y, *args, **kwargs):
        return np.divide(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def matmul(x, y, *args, **kwargs):
        return np.matmul(x, y, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def dot(x, y, *args, **kwargs):
        return np.dot(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def power(x, y, *args, **kwargs):
        return np.power(x, y, *args, **kwargs)

    # single tensor

    @staticmethod
    @jit(nopython=True)
    def square(x, *args, **kwargs):
        return np.square(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def sqrt(x, *args, **kwargs):
        return np.sqrt(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def log(x, *args, **kwargs):
        return np.log(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def exp(x, *args, **kwargs):
        return np.exp(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def sin(x, *args, **kwargs):
        return np.sin(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def cos(x, *args, **kwargs):
        return np.cos(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def tan(x, *args, **kwargs):
        return np.tan(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def sinh(x, *args, **kwargs):
        return np.sinh(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def cosh(x, *args, **kwargs):
        return np.cosh(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def tanh(x, *args, **kwargs):
        return np.tanh(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def abs(x, *args, **kwargs):
        return np.abs(x, *args, **kwargs)

    # signs

    @staticmethod
    @jit(nopython=True)
    def sign(x, *args, **kwargs):
        return np.sign(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def positive(x, *args, **kwargs):
        return np.positive(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def negative(x, *args, **kwargs):
        return np.negative(x, *args, **kwargs)

    # compare

    @staticmethod
    @jit(nopython=True)
    def equal(x, y, *args, **kwargs):
        return np.equal(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def not_equal(x, y, *args, **kwargs):
        return np.not_equal(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def less(x, y, *args, **kwargs):
        return np.less(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def less_equal(x, y, *args, **kwargs):
        return np.less_equal(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def greater(x, y, *args, **kwargs):
        return np.greater(x, y, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def greater_equal(x, y, *args, **kwargs):
        return np.greater_equal(x, y, *args, **kwargs)
    
    # logic
    
    @staticmethod
    @jit(nopython=True)
    def logical_and(x, *args, **kwargs):
        return np.logical_and(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def logical_or(x, *args, **kwargs):
        return np.logical_or(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def logical_xor(x, *args, **kwargs):
        return np.logical_xor(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def logical_not(x, *args, **kwargs):
        return np.logical_not(x, *args, **kwargs)
    
    # shaping

    @staticmethod
    @jit(nopython=True)
    def flatten(x, **kwargs):
        return np.reshape(x, -1, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def reshape(x, *args, **kwargs):
        return np.reshape(x, *args, **kwargs)

    # broadcasting

    @staticmethod
    @jit(nopython=True)
    def broadcast_to(x, *args, **kwargs):
        return np.broadcast_to(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def repeat(x, *args, **kwargs):
        return np.repeat(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def tile(x, *args, **kwargs):
        return np.tile(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def concatenate(x, *args, **kwargs):
        return np.concatenate(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def split(x, *args, **kwargs):
        return np.split(x, *args, **kwargs)

    # reduce

    @staticmethod
    @jit(nopython=True)
    def sum(x, *args, **kwargs):
        return np.sum(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def prod(x, *args, **kwargs):
        return np.prod(x, *args, **kwargs)

    # min/max etc

    @staticmethod
    @jit(nopython=True)
    def max(x, *args, **kwargs):
        return np.max(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def min(x, *args, **kwargs):
        return np.min(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def mean(x, *args, **kwargs):
        return np.mean(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def var(x, *args, **kwargs):
        return np.var(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def std(x, *args, **kwargs):
        return np.std(x, *args, **kwargs)

    # others

    @staticmethod
    @jit(nopython=True)
    def pad(x, *args, **kwargs):
        return np.pad(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def insert(x, *args, **kwargs):
        return np.insert(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def transpose(x, *args, **kwargs):
        return np.transpose(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def where(x, *args, **kwargs):
        return np.where(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def cumsum(x, *args, **kwargs):
        return np.cumsum(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def cumprod(x, *args, **kwargs):
        return np.cumprod(x, *args, **kwargs)

    # not working yet

    @staticmethod
    @jit(nopython=True)
    def as_strided(x, *args, **kwargs):
        return np.lib.stride_tricks.as_strided(x, *args, **kwargs)
    
    @staticmethod
    @jit(nopython=True)
    def sliding_window_view( x, *args, **kwargs):
        return np.lib.stride_tricks.sliding_window_view(x, *args, **kwargs)

    @staticmethod
    @jit(nopython=True)
    def einsum(x, y, *args, **kwargs):
        return np.einsum('bihwkl,oikl->bohw', x, y, *args, **kwargs)


class PytorchBackend(BackendInterface):
    try:
        import torch
    except ImportError:
        pass
    # init

    def array(self, x, *args, **kwargs):
        return self.torch.tensor(x, *args, **kwargs)
    
    def copy(self, x, *args, **kwargs):
        return self.torch.clone(x)
    
    def zeros(self, x, *args, **kwargs):
        return self.torch.zeros(x, *args, **kwargs)

    def ones(self, x, *args, **kwargs):
        return self.torch.ones(x, *args, **kwargs)

    def zeros_like(self, x, *args, **kwargs):
        return self.torch.zeros_like(x, *args, **kwargs)

    def ones_like(self, x, *args, **kwargs):
        return self.torch.ones_like(x, *args, **kwargs)
    
    def arange(self, *args, **kwargs):
        return self.torch.arange(*args, **kwargs)

    # double tensor

    def add(self, x, y, *args, **kwargs):
        return self.torch.add(x, y, *args, **kwargs)

    def subtract(self, x, y, *args, **kwargs):
        return self.torch.subtract(x, y, *args, **kwargs)

    def multiply(self, x, y, *args, **kwargs):
        return self.torch.multiply(x, y, *args, **kwargs)

    def divide(self, x, y, *args, **kwargs):
        return self.torch.divide(x, y, *args, **kwargs)

    def matmul(self, x, y, *args, **kwargs):
        return self.torch.matmul(x, y, *args, **kwargs)
    
    def dot(self, x, y, *args, **kwargs):
        return self.torch.dot(x, y, *args, **kwargs)

    def power(self, x, y, *args, **kwargs):
        return self.torch.pow(x, y, *args, **kwargs)

    # single tensor

    def square(self, x, *args, **kwargs):
        return self.torch.square(x, *args, **kwargs)
    
    def sqrt(self, x, *args, **kwargs):
        return self.torch.sqrt(x, *args, **kwargs)

    def log(self, x, *args, **kwargs):
        return self.torch.log(x, *args, **kwargs)

    def exp(self, x, *args, **kwargs):
        return self.torch.exp(x, *args, **kwargs)

    def sin(self, x, *args, **kwargs):
        return self.torch.sin(x, *args, **kwargs)

    def cos(self, x, *args, **kwargs):
        return self.torch.cos(x, *args, **kwargs)

    def tan(self, x, *args, **kwargs):
        return self.torch.tan(x, *args, **kwargs)

    def sinh(self, x, *args, **kwargs):
        return self.torch.sinh(x, *args, **kwargs)

    def cosh(self, x, *args, **kwargs):
        return self.torch.cosh(x, *args, **kwargs)

    def tanh(self, x, *args, **kwargs):
        return self.torch.tanh(x, *args, **kwargs)

    def abs(self, x, *args, **kwargs):
        return self.torch.abs(x, *args, **kwargs)

    # signs

    def sign(self, x, *args, **kwargs):
        return self.torch.sign(x, *args, **kwargs)
    
    def positive(self, x, *args, **kwargs):
        return self.torch.positive(x, *args, **kwargs)
    
    def negative(self, x, *args, **kwargs):
        return self.torch.negative(x, *args, **kwargs)

    # compare

    def equal(self, x, y, *args, **kwargs):
        return self.torch.equal(x, y, *args, **kwargs)

    def not_equal(self, x, y, *args, **kwargs):
        return self.torch.not_equal(x, y, *args, **kwargs)

    def less(self, x, y, *args, **kwargs):
        return self.torch.less(x, y, *args, **kwargs)

    def less_equal(self, x, y, *args, **kwargs):
        return self.torch.less_equal(x, y, *args, **kwargs)

    def greater(self, x, y, *args, **kwargs):
        return self.torch.greater(x, y, *args, **kwargs)

    def greater_equal(self, x, y, *args, **kwargs):
        return self.torch.greater_equal(x, y, *args, **kwargs)

    # logic
    
    def logical_and(self, x, *args, **kwargs):
        return self.torch.logical_and(x, *args, **kwargs)
    
    def logical_or(self, x, *args, **kwargs):
        return self.torch.logical_or(x, *args, **kwargs)

    def logical_xor(self, x, *args, **kwargs):
        return self.torch.logical_xor(x, *args, **kwargs)
    
    def logical_not(self, x, *args, **kwargs):
        return self.torch.logical_not(x, *args, **kwargs)
    
    # shaping

    def flatten(self, x, **kwargs):
        return self.torch.reshape(x, -1, **kwargs)

    def reshape(self, x, *args, **kwargs):
        return self.torch.reshape(x, *args, **kwargs)

    # broadcasting

    def broadcast_to(self, x, *args, **kwargs):
        return self.torch.broadcast_to(x, *args, **kwargs)

    def repeat(self, x, *args, **kwargs):
        return self.torch.repeat(x, *args, **kwargs)

    def tile(self, x, *args, **kwargs):
        return self.torch.tile(x, *args, **kwargs)

    def concatenate(self, x, *args, **kwargs):
        return self.torch.cat(x, *args, **kwargs)
    
    def split(self, x, *args, **kwargs):
        return self.torch.split(x, *args, **kwargs)

    # reduce

    def sum(self, x, *args, **kwargs):
        return self.torch.sum(x)

    def prod(self, x, *args, **kwargs):
        return self.torch.prod(x, *args, **kwargs)

    # min/max etc

    def max(self, x, *args, **kwargs):
        return self.torch.max(x, *args, **kwargs)

    def min(self, x, *args, **kwargs):
        return self.torch.min(x, *args, **kwargs)

    def mean(self, x, *args, **kwargs):
        return self.torch.mean(x, *args, **kwargs)

    def var(self, x, *args, **kwargs):
        return self.torch.var(x, *args, **kwargs)

    def std(self, x, *args, **kwargs):
        return self.torch.std(x, *args, **kwargs)

    # others

    def pad(self, x, *args, **kwargs):
        return self.torch.pad(x, *args, **kwargs)

    def insert(self, x, *args, **kwargs):
        return self.torch.insert(x, *args, **kwargs)
    
    def transpose(self, x, *args, **kwargs):
        return self.torch.transpose(x, 0, 1)

    def where(self, x, *args, **kwargs):
        return self.torch.where(x, *args, **kwargs)
    
    def cumsum(self, x, *args, **kwargs):
        return self.torch.cumsum(x, *args, **kwargs)

    def cumprod(self, x, *args, **kwargs):
        return self.torch.cumprod(x, *args, **kwargs)

    # not working yet

    def as_strided(self, x, *args, **kwargs):
        return self.torch.as_strided(x, *args, **kwargs)
    
    def sliding_window_view(self, x, *args, **kwargs):
        raise NotImplementedError

    def einsum(self, subscript, x, y, *args, **kwargs):
        return self.torch.einsum(subscript, x, y, *args, **kwargs)


class TensorflowBackend(BackendInterface):
    try:
        import tensorflow as tf
    except ImportError:
        pass
    # Implement the necessary methods here using TensorFlow's functions
    pass