Skip to content
Snippets Groups Projects
weights.py 2.65 KiB
Newer Older
johannes bilk's avatar
johannes bilk committed
import numpy as np
from numpy.typing import ArrayLike


def initializeWeights(size: tuple | int, scale: float = 1.0, init: str = 'random') -> ArrayLike:
    """
    Initialize filter using a normal distribution with and a
    standard deviation inversely proportional the square root of the number of units
    """
    if init == 'random':
        stddev = scale/np.sqrt(np.prod(size))
        return np.random.normal(loc=0, scale=stddev, size=size)
    elif init == 'ones':
        return np.ones(size)
    elif init == 'zeros':
        return np.zeros(size)
    else:
        raise ValueError('not a valid init argument')


class Weights(object):
    """
    the idea behind class is to combine everything an optimizer needs into one object
    this way layers and optimizers don't need to take care of storing and providing
    things like previous updates or cache
    """
    __slots__ = ['values', 'prevValues', 'deltas', 'prevDeltas', 'cache']

    def __init__(self, size: tuple | int, values: ArrayLike = None, init: str = 'random') -> None:
        self.values = initializeWeights(size, init=init) if values is None else values
        self.prevValues = None
        self.deltas = np.zeros(size)
        self.prevDeltas = None
        self.cache = None

    @property
    def qualifiedName(self) -> tuple:
        return self.__class__.__module__, self.__class__.__name__

    def toDict(self) -> dict:
        saveDict = {}
        saveDict['size'] = self.values.shape
        saveDict['values'] = self.values.tolist()
        saveDict['deltas'] = self.deltas.tolist()
        if self.prevValues is not None:
            saveDict['prevValues'] = self.prevValues.tolist()
        saveDict['cache'] = {}
        if type(self.cache) == dict:
            saveDict['cache']['values'] = {}
            for key in self.cache:
                saveDict['cache']['values'][key] = self.cache[key].tolist()
            saveDict['cache']['type'] = 'dict'
        elif type(self.cache) == np.ndarray:
            saveDict['cache']['values'] = self.cache.tolist()
            saveDict['cache']['type'] = 'np.ndarray'

        return saveDict

    def fromDict(self, loadDict: dict) -> None:
        self.values = np.array(loadDict['values'])
        self.deltas = np.array(loadDict['deltas'])
        if 'prevValues' in loadDict:
            self.prevValues = np.array(loadDict['prevValues'])
        if loadDict['cache']['type'] == 'np.ndarray':
            self.cache = np.array(loadDict['cache']['values'])
        elif loadDict['cache']['type'] == 'dict':
            self.cache = {}
            for key in loadDict['cache']['values']:
                self.cache[key] = np.array(loadDict['cache']['values'][key])