Skip to content
Snippets Groups Projects
loss.py 6.81 KiB
Newer Older
johannes bilk's avatar
johannes bilk committed
import numpy as np
from numpy.typing import ArrayLike
from abc import ABC, abstractmethod


class LossFunction(ABC):
    """
    Base class for all loss functions.
    """
    __slots__ = ['name', 'prediction', 'target']

    def __init__(self) -> None:
        self.name = self.__class__.__name__

    def forward(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Computes the loss for the given prediction and target values.
        """
        self.prediction = prediction
        self.target = target
        loss = self._function(prediction, target)
        return np.mean(loss)

    def __call__(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Allows the instance of the LossFunction class to be called like a function.
        """
        return self.forward(prediction, target)

    def backward(self) -> np.ndarray:
        """
        Computes the derivative of the loss with respect to the predicted values.
        """
        return self._derivative()

    @abstractmethod
    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Computes the loss for the given prediction and target values.
        """
        pass

    @abstractmethod
    def _derivative(self) -> np.ndarray:
        """
        Computes the derivative of the loss with respect to the predicted values.
        """
        pass

    def __str__(self) -> str:
        """
        used for print the layer in a human readable manner
        """
        return self.name


class MAELoss(LossFunction):
    """
    Mean Absolute Error (MAE) loss function for regression tasks.
    """
    __slots__ = []

    def __init__(self) -> None:
        super().__init__()

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Computes the mean absolute error between the predicted and target values.
        """
        return np.abs(target - prediction)

    def _derivative(self) -> np.ndarray:
        """
        Computes the derivative of the mean absolute error with respect to the predicted values.
        """
        return np.sign(self.prediction - self.target) / self.target.size


class MSELoss(LossFunction):
    """
    Mean Squared Error (MSE) loss function for regression tasks.
    """
    __slots__ = []

    def __init__(self) -> None:
        super().__init__()

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Computes the mean squared error between the predicted and target values.
        """
        return np.power(target - prediction, 2)

    def _derivative(self) -> np.ndarray:
        """
        Computes the derivative of the mean squared error with respect to the predicted values.
        """
        return 2 * (self.prediction - self.target) / self.target.size


class HuberLoss(LossFunction):
    """
    Class for implementing the Huber loss function for regression tasks.
    """
    __slots__ = ['delta']

    def __init__(self, delta: float = 1.0) -> None:
        super().__init__()
        self.delta = delta

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Calculates the Huber loss value based on the prediction and target arrays.
        """
        diff = target - prediction
        return np.where(np.abs(diff) < self.delta, 0.5 * np.square(diff), self.delta * np.abs(diff) - 0.5 * self.delta ** 2)

    def _derivative(self) -> np.ndarray:
        """
        Calculates the derivative of the Huber loss function with respect to the prediction array.
        """
        diff = self.prediction - self.target
        return np.where(np.abs(diff) < self.delta, diff, self.delta * np.sign(diff))


class NLLLoss(LossFunction):
    """
    intended for classification
    """
    __slots__ = ['epsilon']

    def __init__(self, epsilon: float = 1e-8) -> None:
        super().__init__()
        self.epsilon = epsilon

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Compute the negative log-likelihood loss for binary classification.
        """
        return - (target * np.log(prediction + self.epsilon) + (1 - target) * np.log(1 - prediction + self.epsilon))

    def _derivative(self) -> np.ndarray:
        """
        Compute the derivative of the negative log-likelihood loss.
        """
        return (self.prediction - self.target) / (self.prediction * (1 - self.prediction) + self.epsilon)


class CrossEntropyLoss(LossFunction):
    """
    intended for classification
    """
    __slots__ = ['epsilon']

    def __init__(self, epsilon: float = 1e-8) -> None:
        super().__init__()
        self.epsilon = epsilon # stability parameter

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Compute cross entropy loss for binary classification.
        """
        confidence = np.sum(prediction * target, axis=1)
        return - np.log(confidence + self.epsilon)

    def _derivative(self) -> np.ndarray:
        """
        Compute the derivative of cross entropy loss.
        """
        return (self.prediction - self.target) / self.target.size


class FocalLoss(LossFunction):
    """
    intended for classification
    this is an alternative to cross entropy loss...
    it could be that the derivative is wrong
    """
    __slots__ = ['focus', 'epsilon']

    def __init__(self, focus: float = 1.5, epsilon: float = 1e-8):
        super().__init__()
        self.focus = focus
        self.epsilon = epsilon # stability parameter

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Compute focal loss for binary classification.
        """
        confidence = np.sum(prediction * target, axis=1)
        return - self._power(1 - confidence, self.focus) * np.log(confidence + self.epsilon)

    def _derivative(self) -> np.ndarray:
        """
        Compute the derivative of focal loss.
        """
        pt = np.sum(self.prediction * self.target, axis=1) # p_t
        term1 = - (1 - pt)**self.focus * (-np.log(pt) - 1)
        term2 = self.focus * (1 - pt)**(self.focus - 1) * np.log(pt)
        return - (term1 + term2)


class HellingerLoss(LossFunction):
    """
    intended for classification
    """
    __slots__ = ['epsilon']

    def __init__(self, epsilon: float = 1e-8) -> None:
        super().__init__()
        self.epsilon = epsilon # stability parameter

    def _function(self, prediction: ArrayLike, target: ArrayLike) -> float:
        """
        Compute hellinger loss for binary classification.
        """
        return np.power(np.sqrt(target) - np.sqrt(prediction), 2)

    def _derivative(self) -> np.ndarray:
        """
        Compute the derivative of hellinger loss.
        """
        p_sqrt = np.sqrt(self.prediction)
        q_sqrt = np.sqrt(self.target)
        return (1/2*np.sqrt(2)) * (q_sqrt - p_sqrt) / p_sqrt