Skip to content
Snippets Groups Projects
tensor.py 55.8 KiB
Newer Older
johannes bilk's avatar
johannes bilk committed
import numpy as np
from numpy.typing import ArrayLike
from typing import Any, Callable
from abc import ABC, abstractmethod
from .backend import BackendInterface, NumpyBackend, CupyBackend, NumbaBackend


class Tensor(object):
    __slots__ = ['_backend', 'data', 'gradient', 'requireGradient', 'gradientFunc', 'batched']

    __backend__ = NumpyBackend()

    def __init__(self, data: Any,
                 gradient: Any = None,
                 gradientFunc: Callable = None,
                 requireGradient: bool = False,
                 batched: bool = True) -> None:

        self._backend = Tensor.__backend__

        #if isinstance(data, (list | np.ndarray)):
        #    data = self._backend.array(data)
        #elif isinstance(data, (int, float)):
        #    data = self._backend.array([data])
        #elif isinstance(data, self.__class__):
        #    gradient = data.gradient if gradient is None else gradient
        #    gradientFunc = data.gradientFunc if gradientFunc is None else gradientFunc
        #    requireGradient = data.requireGradient if requireGradient is False else requireGradient
        #    data = data.data
        
        #if len(data.shape) == 1:
        #    data = self._backend.reshape(data, (1, *data.shape))

        #if gradient is None and requireGradient:
        #    # If gradient is not provided and it's required, initialize it as None
        #    gradient = self._backend.zeros_like(data)
        #elif isinstance(gradient, (list, int, float)):
        #    gradient = self._backend.array(gradient)

        # Checking if the shapes are the same
        #if gradient is not None:
        #    assert data.shape == gradient.shape, "value and gradient must have the same shape"

        self.data = data
        self.gradient = gradient
        self.requireGradient = requireGradient
        self.gradientFunc = gradientFunc
        self.batched = batched

    def zeroGradient(self) -> None:
        """In-place operation for nulling the gradient"""
        if self.requireGradient:
            self.gradient = self._backend.zeros_like(self.data)
        else:
            raise AttributeError("this tensor is not differentiable")

    def backward(self, gradient=None):
        """
        Compute the gradients recursively by applying the chain rule.
        """
        if gradient is None:
            gradient = self._backend.ones_like(self.data)

        if not self.requireGradient:
            return

        # If grad_fn is not set, this is probably the starting point for backpropagation,
        # so we don't need to compute further backward.
        if self.gradientFunc is None:
            return

        # Accumulate gradients instead of overwriting.
        self.gradient += gradient
        # Compute the local gradients using grad_fn
        self.gradientFunc.backward(self.gradient)

    def __repr__(self) -> str:
        """String representation."""
        dataTitle = 'data:\n'
        gradientTitle = 'gradient:\n'
        dataStr = str(self.data)
        gradientStr = str(self.gradient)
        if self.requireGradient is True:
            return dataTitle + dataStr + '\n' + gradientTitle + gradientStr
        else:
            return dataTitle + dataStr

    def copy(self) -> 'Tensor':
        data = self._backend.copy(self.data)
        gradient = self._backend.copy(self.gradient)
        return self.__class__(data, gradient, gradientFunc=self.gradientFunc, requireGradient=self.requireGradient)

    @property
    def strides(self) -> tuple:
        return self.data.strides

    def __len__(self) -> int:
        """Return the length of the value."""
        return len(self.data)

    @property
    def shape(self) -> tuple:
        """Return the shape of the value."""
        return self.data.shape
    
    @property
    def ndim(self) -> tuple:
        """Return the ndim of the value."""
        return self.data.ndim

    def reshape(self, newShape) -> 'Tensor':
        return Reshape()(self, newShape)
    
    def transpose(self) -> 'Tensor':
        return Transpose()(self)

    def T(self) -> 'Tensor':
        return Transpose()(self)

    def tolist(self) -> tuple[list, list] | list:
        if self.requireGradient is True:
            return self.data.tolist(), self.gradient.tolist()
        else:
            return self.data.tolist()

    @classmethod
    def setBackend(cls, backend: BackendInterface) -> None:
        cls.__backend__ = backend

    def __getitem__(self, index):
        """Get an item by index."""
        if self.requireGradient is True:
            return self.__class__(data=self.data[index], gradient=self.gradient[index], requireGradient=True, gradientFunc=self.gradientFunc)
        else:
            return self.__class__(data=self.data[index], requireGradient=False)

    def __setitem__(self, index, value) -> None:
        """Set the value of an item by index."""
        if isinstance(value, self.__class__):
            self.data[index] = value.data
            if value.requireGradient is True:
                self.gradient[index] = value.gradient
                self.requireGradient = True
        else:
            self.data[index] = value
            self.gradient[index] = 0

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        if method == '__call__':
            operation = ufuncMap.get(ufunc)
            if operation is not None:
                return operation()(*inputs, **kwargs)
        raise NotImplementedError(f'{ufunc} is not implemented yet')

    def __array_function__(self, func, types, args, kwargs):
        operation = funcMap.get(func)
        if operation is not None:
            return operation()(*args, **kwargs)
        raise NotImplementedError(f'{func} is not implemented yet')
        
    def __add__(self, other: ArrayLike) -> 'Tensor':
        return Add()(self, other)

    def __radd__(self, other: ArrayLike) -> 'Tensor':
        return Add()(other, self)

    def __iadd__(self, other: ArrayLike) -> 'Tensor':
        result = Add()(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __sub__(self, other: ArrayLike) -> 'Tensor':
        return Subtract()(self, other)

    def __rsub__(self, other: ArrayLike) -> 'Tensor':
        return Subtract()(other, self)

    def __isub__(self, other: ArrayLike) -> 'Tensor':
        result = Subtract(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __mul__(self, other: ArrayLike) -> 'Tensor':
        return Multiply()(self, other)

    def __rmul__(self, other: ArrayLike) -> 'Tensor':
        return Multiply()(other, self)

    def __imul__(self, other: ArrayLike) -> 'Tensor':
        result = Multiply(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __truediv__(self, other: ArrayLike) -> 'Tensor':
johannes bilk's avatar
johannes bilk committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
        return Divide()(self, other)

    def __rtruediv__(self, other: ArrayLike) -> 'Tensor':
        return Divide()(other, self)

    def __itruediv__(self, other: ArrayLike) -> 'Tensor':
        result = Divide(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __matmul__(self, other: ArrayLike) -> 'Tensor':
        return Matmul()(self, other)

    def __rmatmul__(self, other: ArrayLike) -> 'Tensor':
        return Matmul()(other, self)

    def __imatmul__(self, other: ArrayLike) -> 'Tensor':
        result = Matmul(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __pow__(self, other: ArrayLike) -> 'Tensor':
        return Power()(self, other)

    def __rpow__(self, other: ArrayLike) -> 'Tensor':
        return Power()(other, self)

    def __ipow__(self, other: ArrayLike) -> 'Tensor':
        result = Power(self, other)
        self.data = result.data
        self.gradient = result.gradient
        self.requireGradient = result.requireGradient
        return self

    def __abs__(self) -> 'Tensor':
        return Abs()(self)

    def __pos__(self) -> 'Tensor':
        return Positive()(self)

    def __neg__(self) -> 'Tensor':
        return Negative()(self)

    def __eq__(self, other) -> bool:
        """Equality comparison."""
        return Equal()(self, other)

    def __gt__(self, other) -> bool:
        """Greater than comparison."""
        return Greater()(self, other)

    def __ge__(self, other) -> bool:
        """Greater than or equal to comparison."""
        return GreaterEqual()(self, other)

    def __lt__(self, other) -> bool:
        """Less than comparison."""
        return Less()(self, other)

    def __le__(self, other) -> bool:
        """Less than or equal to comparison."""
        return LessEqual()(self, other)


def checkTensor(tensor: Tensor) -> Tensor:
    if isinstance(tensor, Tensor):
        return tensor
    return Tensor(tensor)


#
# Operations
#


class Operation(ABC):
    __slots__ = ['name', 'operationID', 'backend']
    id = 0
    __backend__ = Tensor.__backend__

    def __init__(self) -> None:
        self.name = self.__class__.__name__
        self.operationID = Operation.id
        self.backend = Operation.__backend__
        Operation.id += 1

    @abstractmethod
    def forward(self, *args, **kwargs) -> Tensor:
        raise NotImplementedError

    @abstractmethod
    def backward(self, gradient: np.ndarray) -> None:
        raise NotImplementedError

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def __repr__(self) -> str:
        return f'{self.name}, {self.operationID}'

    def at(self, tensor: Tensor, indices, value) -> None:
         # not ready for use yet
         tensor = self.forward(indices, value)


class TwoTensors(Operation):
    __slots__ = ['tensor1', 'tensor2']

    def __init__(self) -> None:
        super().__init__()
        self.tensor1 = None
        self.tensor2 = None
        self.tensor1BroadcastAxis = None
        self.tensor2BroadcastAxis = None
  
    def getbroadcastAxid(self, data, gradient) -> None:
        # Store old shapes
        tensorShape = np.array(data.shape)
        
        # Get new shape
        gradientShape = np.array(gradient.shape)

        # Prepend ones to the shape of the smaller array
        if len(tensorShape) < len(gradientShape):
            tensorShape = np.pad(tensorShape, (len(gradientShape) - len(tensorShape), 0), mode='constant', constant_values=1)
        elif len(tensorShape) > len(gradientShape):
            gradientShape = np.pad(gradientShape, (len(tensorShape) - len(gradientShape), 0), mode='constant', constant_values=1)
        
        # Find broadcasted axes
        tensorBroadcastAxis = np.where(tensorShape != gradientShape)[0]

        # Change broadcastAxis variables to None if they're empty
        if tensorBroadcastAxis.size == 0:
            tensorBroadcastAxis = None
        
        return tensorBroadcastAxis

    def forward(self, tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
        
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            self.tensor1 = tensor1
            self.tensor2 = tensor2

        data = self._operation(tensor1.data, tensor2.data, *args, **kwargs)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            gradientForTensor1 = self.backend.copy(gradient)

            tensorBroadcastAxis = self.getbroadcastAxid(self.tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)

            self.tensor1.gradient = self._derivativeD1(gradientForTensor1)
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            gradientForTensor2 = self.backend.copy(gradient)

            tensorBroadcastAxis = self.getbroadcastAxid(self.tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)

            self.tensor2.gradient = self._derivativeD2(gradientForTensor2)
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)

    @abstractmethod
    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        raise NotImplementedError

    @abstractmethod
    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        raise NotImplementedError
    
    @abstractmethod
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        raise NotImplementedError


class OneTensor(Operation):
    __slots__ = ['tensor']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = self._operation(tensor.data, *args, **kwargs)
       
        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self._derivative(gradient)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)

    @abstractmethod
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        raise NotImplementedError
    
    @abstractmethod
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        raise NotImplementedError


#
# Two Tensors
#


class Add(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(data1, data2, *args, **kwargs)

    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor1.gradient, gradient)
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor2.gradient, gradient)


class Subtract(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.subtract(data1, data2, *args, **kwargs)

    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor1.gradient, gradient)
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.subtract(self.tensor2.gradient, gradient)


class Multiply(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(data1, data2, *args, **kwargs)

    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor1.gradient, self.backend.multiply(self.tensor2.data, gradient))
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor2.gradient, self.backend.multiply(self.tensor1.data, gradient))


class Divide(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.divide(data1, data2, *args, **kwargs)

    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor1.gradient, self.backend.divide(gradient, self.tensor2.data))
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.subtract(self.tensor2.gradient, self.backend.divide(self.backend.multiply(self.tensor1.data, gradient), self.backend.power(self.tensor2.data, 2)))


class Matmul(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.matmul(data1, data2, *args, **kwargs)
    
    # Update the backward pass to handle batch dimension
    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        if len(self.tensor1.data.shape) > 2 or len(self.tensor2.data.shape) > 2:
            return self.backend.add(self.tensor1.gradient, self.backend.matmul(gradient, self.backend.transpose(self.tensor2.data, axes=(0, 2, 1))))
        else:
            return self.backend.add(self.tensor1.gradient, self.backend.matmul(gradient, self.backend.transpose(self.tensor2.data)))
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        if len(self.tensor1.data.shape) > 2 or len(self.tensor2.data.shape) > 2:
            return self.backend.add(self.tensor2.gradient, self.backend.matmul(self.backend.transpose(self.tensor1.data, axes=(0, 2, 1)), gradient))
        else:
            return self.backend.add(self.tensor2.gradient, self.backend.matmul(self.backend.transpose(self.tensor1.data), gradient))
    
    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            gradientForTensor1 = self.backend.copy(gradient)

            self.tensor1.gradient = self._derivativeD1(gradientForTensor1)
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            gradientForTensor2 = self.backend.copy(gradient)

            self.tensor2.gradient = self._derivativeD2(gradientForTensor2)
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)


class Dot(TwoTensors):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.dot(data1, data2)

    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.tensor2.data, gradient)
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.tensor1.data, gradient)


class Power(TwoTensors):
    def __init__(self) -> None:
        super().__init__()
        
    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.power(data1, data2)
    
    def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor1.gradient, self.backend.multiply(self.backend.multiply(self.tensor2.data, self.backend.power(self.tensor1.data, (self.backend.subtract(self.tensor2.data, 1)))), gradient))
    
    def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor2.gradient, self.backend.multiply(self.backend.multiply(self.backend.log(self.tensor1.data), self.backend.power(self.tensor1.data, self.tensor2.data)), gradient))


#
# Single Tensor
#


class Square(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.square(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.multiply(self.tensor.data, 2.0), gradient)


class Sqrt(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.sqrt(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.divide(0.5, self.backend.sqrt(self.tensor.data)), gradient)
   

class Log(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.log(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.add(self.tensor.gradient, self.backend.multiply((self.backend.divide(1, self.tensor.data)), gradient))


class Exp(OneTensor):
    __slots__ = ['data']

    def __init__(self) -> None:
        super().__init__()
        self.data = None
    
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.data = self.backend.exp(data, *args, **kwargs)
        return self.data
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.data * gradient


class Sin(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.sin(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.cos(self.tensor.data), gradient)


class Cos(OneTensor):
    def __init__(self) -> None:
        super().__init__()
    
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.cos(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.negative(self.backend.multiply(self.backend.sin(self.tensor.data), gradient))


class Tan(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.tan(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply((self.backend.divide(1, self.backend.power(np.cos(self.tensor.data), 2))), gradient)


class Sinh(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.sinh(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.cosh(self.tensor.data), gradient)


class Cosh(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.cosh(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.sinh(self.tensor.data), gradient)


class Tanh(OneTensor):
    def __init__(self) -> None:
        super().__init__()
    
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.tanh(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply((self.backend.divide(1, self.backend.power(np.cosh(self.tensor.data), 2))), gradient)


class Abs(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.abs(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.sign(self.tensor.data), gradient)


#
# Signs
#


class Sign(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.sign(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.sign(self.tensor.data), gradient)


class Positive(OneTensor):
    def __init__(self) -> None:
        super().__init__()
    
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.positive(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.positive(self.tensor.data), gradient)


class Negative(OneTensor):
    def __init__(self) -> None:
        super().__init__()
    
    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.negative(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.backend.negative(self.tensor.data), gradient)


#
# Compare
#


class Equal(TwoTensors):
    __slots__ = ['bools']

    def __init__(self) -> None:
        super().__init__()
        self.bools = None

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.equal(data1, data2)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


class NotEqual(TwoTensors):
    __slots__ = ['bools']

    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.bools = self.backend.not_equal(data1, data2)
        return self.bools
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


class Less(TwoTensors):
    __slots__ = ['bools']
    
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.bools = self.backend.less(data1, data2)
        return self.bools
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


class LessEqual(TwoTensors):
    __slots__ = ['bools']

    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.bools = self.backend.less_equal(data1, data2)
        return self.bools
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


class Greater(TwoTensors):
    __slots__ = ['bools']

    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.bools = self.backend.greater(data1, data2)
        return self.bools
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


class GreaterEqual(TwoTensors):
    __slots__ = ['bools']

    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
        self.bools = self.backend.greater_equal(data1, data2)
        return self.bools
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.multiply(self.bools, gradient)


#
# Shaping
#


class Flatten(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.reshape(data, newshape=(-1))
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.reshape(gradient, newshape=self.tensor.shape)


class Reshape(OneTensor):
    def __init__(self) -> None:
        super().__init__()

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.reshape(data, *args, **kwargs)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.reshape(gradient, newshape=self.tensor.shape)


#
# Broadcasting
#


class Repeat(Operation):
    __slots__ = ['repeats', 'axis', 'tensor']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, repeats: ArrayLike, axis: int = None) -> Tensor:
        tensor = checkTensor(tensor)
        self.repeats = repeats
        self.axis = axis

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = self.backend.repeat(tensor.data, repeats=self.repeats, axis=self.axis)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            if self.axis is None:
                sum_axis = tuple(range(gradient.ndim)[::-self.repeats])
                counts = np.prod(self.repeats)
            else:
                sum_axis = self.axis
                counts = self.repeats

            grad = self.backend.sum(gradient, axis=sum_axis, keepdims=True)
            grad = self.backend.divide(grad, counts)
            self.tensor.gradient = self.backend.broadcast_to(grad, self.tensor.shape)

            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Tile(Operation):
    __slots__ = ['tensor', 'reps']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, reps: ArrayLike) -> Tensor:
        tensor = checkTensor(tensor)
        self.reps = reps

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = self.backend.tile(tensor.data, reps=self.reps)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            reshaped = self.backend.reshape(gradient, self.tensor.shape + self.reps)
            axis = tuple(range(self.tensor.ndim, gradient.ndim))
            self.tensor.gradient = self.backend.sum(reshaped, axis=axis)

            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Concatenate(Operation):
    __slots__ = ['tensors', 'axis', 'out', 'dtype', 'casting', 'shapes']

    def __init__(self) -> None:
        super().__init__()
        self.tensors = None
        
    def forward(self, tensors: Tensor, axis=0, out=None, dtype=None, casting='same_kind') -> Tensor:
        self.axis = axis
        self.out = out
        self.dtype = dtype
        self.casting = casting

        tensors = [checkTensor(tensor) for tensor in tensors]

        requireGradient = any(tensor.requireGradient for tensor in tensors)
        if requireGradient:
            self.tensors = tensors
            self.shapes = [tensor.shape for tensor in tensors]

        data = self.backend.concatenate([tensor.data for tensor in tensors], axis=self.axis, out=self.out, dtype=self.dtype, casting=self.casting)
        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        grads = self.backend.split(gradient, self.backend.cumsum([shape[self.axis] for shape in self.shapes[:-1]]), axis=self.axis)
        for tensor, grad in zip(self.tensors, grads):
            if tensor.requireGradient:
                tensor.gradient = grad
                if tensor.gradientFunc:
                    tensor.gradientFunc.backward(tensor.gradient)


class Hstack(Concatenate):
    def __init__(self):
        super().__init__()
    
    def forward(self, tensors: Tensor, dtype=None, casting='same_kind'):
        return super().forward(tensors, axis=1, out=None, dtype=dtype, casting=casting)


class Vstack(Concatenate):
    def __init__(self, dtype=None, casting='same_kind'):
        super().__init__()
    
    def forward(self, tensors: Tensor, dtype=None, casting='same_kind'):
        return super().forward(tensors, axis=0, out=None, dtype=dtype, casting=casting)


class Dstack(Concatenate):
    def __init__(self):
        super().__init__()
    
    def forward(self, tensors: Tensor):
        return super().forward(tensors, axis=2)


class Split(Operation):
    __slots__ = ['tensor', 'indices', 'axis']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None
    
    def forward(self, tensor, indices_or_sections, axis=0) -> list[Tensor]:
        tensor = checkTensor(tensor)
        self.indices = indices_or_sections
        self.axis = axis

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor
        
        data = self.backend.split(tensor.data, self.indices, self.axis)

        return [Tensor(datum, requireGradient=requireGradient, gradientFunc=self) for datum in data]

    def backward(self, gradient: np.ndarray) -> None:
        gradient = self.backend.concatenate(gradient, axis=self.axis)
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = gradient
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Hsplit(Split):
    def __init__(self) -> None:
        super().__init__()
        self.tensor = None
    
    def forward(self, tensors: Tensor, indices_or_sections):
        return super().forward(tensors, indices_or_sections=indices_or_sections, axis=1)
    
class Vsplit(Split):
    def __init__(self) -> None:
        super().__init__()
        self.tensor = None
    
    def forward(self, tensors: Tensor, indices_or_sections):
        return super().forward(tensors, indices_or_sections=indices_or_sections, axis=0)

class Dsplit(Split):
    def __init__(self) -> None:
        super().__init__()
        self.tensor = None
    
    def forward(self, tensors: Tensor, indices_or_sections):
        return super().forward(tensors, indices_or_sections=indices_or_sections, axis=2)



#
# Reduce
#


class Sum(Operation):
    __slots__ = ['tensor']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, dtype=None, keepdims=False, **kwargs) -> Tensor:
        tensor = checkTensor(tensor)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = self.backend.sum(tensor.data, axis=axis, dtype=dtype, keepdims=keepdims)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.broadcast_to(gradient.T, self.tensor.shape)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Prod(Operation):
    __slots__ = ['tensor', 'product']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, dtype=None, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = tensor.data
        self.product = self.backend.prod(data, axis=axis, dtype=dtype, keepdims=keepdims)

        return Tensor(self.product, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            tensorNoneZero = self.backend.where(self.tensor.data != 0, self.tensor.data, 1)
            self.tensor.gradient = self.backend.multiply(gradient, self.backend.divide(self.product, tensorNoneZero))
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


#
# Minimum/Maximum etc
#


class Maximum(Operation):
    __slots__ = ['tensor1', 'tensor2', 'data']

    def __init__(self):
        super().__init__()
        self.tensor1 = None
        self.tensor2 = None

    def forward(self, tensor1: Tensor, tensor2: Tensor, out=None, where=True, casting='same_kind', oder='k', dtype=None, subhok=True) -> Tensor:
        tensor1 = checkTensor(tensor1)
        tensor2 = checkTensor(tensor2)

        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            self.tensor1 = tensor1
            self.tensor2 = tensor2

        self.data = self.backend.maximum(tensor1.data, tensor2.data, out=out, where=where, casting=casting, oder=oder, dtype=dtype, subhok=subhok)

        return Tensor(self.data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            # A mask that is True where tensor1 had the maximum value, False elsewhere
            mask = (self.tensor1.data == self.data)
            self.tensor1.gradient = self.backend.multiply(gradient, mask)
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            # A mask that is True where tensor2 had the maximum value, False elsewhere
            mask = (self.tensor2.data == self.data)
            self.tensor2.gradient = self.backend.multiply(gradient, mask)
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)


class Minimum(Operation):
    __slots__ = ['tensor1', 'tensor2', 'data']

    def __init__(self):
        super().__init__()
        self.tensor1 = None
        self.tensor2 = None

    def forward(self, tensor1: Tensor, tensor2: Tensor, out=None, where=True, casting='same_kind', oder='k', dtype=None, subhok=True) -> Tensor:
        tensor1 = checkTensor(tensor1)
        tensor2 = checkTensor(tensor2)

        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            self.tensor1 = tensor1
            self.tensor2 = tensor2

        self.data = self.backend.minium(tensor1.data, tensor2.data, out=out, where=where, casting=casting, oder=oder, dtype=dtype, subhok=subhok)

        return Tensor(self.data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            # A mask that is True where tensor1 had the minimum value, False elsewhere
            mask = (self.tensor1.data == self.data)
            self.tensor1.gradient = self.backend.multiply(gradient, mask)
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            # A mask that is True where tensor2 had the minimum value, False elsewhere
            mask = (self.tensor2.data == self.data)
            self.tensor2.gradient = self.backend.multiply(gradient, mask)
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)


#
# Min/Max etc
#


class Max(Operation):
    __slots__ = ['tensor', 'mask']

    def __init__(self):
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)
        data = self.backend.max(tensor.data, axis=axis, keepdims=keepdims)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor
            self.mask = (tensor.data == self.backend.broadcast_to(data, tensor.shape))

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.multiply(self.mask, gradient)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Min(Operation):
    __slots__ = ['tensor', 'mask']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)
        data = self.backend.min(tensor.data, axis=axis, keepdims=keepdims)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor
            self.mask = (tensor.data == self.backend.broadcast_to(data, tensor.shape))

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.multiply(self.mask, gradient)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Mean(Operation):
    __slots__ = ['tensor', 'divisor']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)
        data = self.backend.mean(tensor.data, axis=axis, keepdims=keepdims)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

            if axis is None:
                self.divisor = self.backend.prod(tensor.shape)
            elif isinstance(axis, int):
                self.divisor = self.backend.prod(tensor.shape[axis])
            else:
                self.divisor = self.backend.prod([tensor.shape[i] for i in axis])

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.divide(gradient, self.divisor)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Var(Operation):
    __slots__ = ['tensor', 'divisor', 'diff']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, ddof=0, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)
        data = self.backend.var(tensor.data, axis=axis, ddof=ddof, keepdims=keepdims)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor
            self.diff = self.backend.subtract(tensor.data, self.backend.mean(tensor.data, axis=axis, keepdims=True))

            if axis is None:
                self.divisor = self.backend.subtract(self.backend.prod(tensor.shape), ddof)
            elif isinstance(axis, int):
                self.divisor = self.backend.subtract(self.backend.prod(tensor.shape[axis]), ddof)
            else:
                self.divisor = self.backend.subtract(self.backend.prod([tensor.shape[i] for i in axis]), ddof)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.multiply(self.backend.multiply(self.backend.divide(2.0, self.divisor), self.diff), gradient)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Std(Operation):
    __slots__ = ['tensor', 'divisor', 'diff']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
        tensor = checkTensor(tensor)
        data = self.backend.std(tensor.data, axis=axis, keepdims=keepdims)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor
            self.diff = self.backend.subtract(tensor.data, self.backend.mean(tensor.data, axis=axis, keepdims=True))

            if axis is None:
                self.divisor = self.backend.prod(tensor.shape)
            elif isinstance(axis, int):
                self.divisor = self.backend.prod(tensor.shape[axis])
            else:
                self.divisor = self.backend.prod([tensor.shape[i] for i in axis])

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient: np.ndarray) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.multiply(gradient, self.backend.divide(self.diff, self.backend.multiply(self.divisor, self.tensor.data)))
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


#
# Others
#


class Pad(Operation):
    __slots__ = ['tensor', 'padding', 'mode', 'constant_values']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, pad_with, mode='constant', constant_values=0) -> Tensor:
        tensor = checkTensor(tensor)

        self.padding = pad_with
        self.mode = mode
        self.constant_values = constant_values

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        data = self.backend.pad(tensor.data, self.padding, mode=self.mode, constant_values=self.constant_values)

        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            slices = tuple(slice(pad[0], -pad[1] if pad[1] != 0 else None) for pad in self.padding)
            self.tensor.gradient = gradient[slices]
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Insert(Operation):
    __slots__ = ['tensor', 'values', 'index']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor, values: Tensor, index: ArrayLike) -> Tensor:
        self.index = index
        tensor = checkTensor(tensor)
        values = checkTensor(values)

        requireGradient = tensor.requireGradient or values.requireGradient
        if requireGradient:
            self.tensor = tensor
            self.values = values

        data = self.backend.insert(tensor.data, self.index, values.data)
        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.delete(gradient, self.index)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)

        if self.values and self.values.requireGradient:
            self.values.gradient = gradient[self.index]
            if self.values.gradientFunc:
                self.values.gradientFunc.backward(self.values.gradient)


class Transpose(Operation):
    __slots__ = ['tensor']

    def __init__(self) -> None:
        super().__init__()
        self.tensor = None

    def forward(self, tensor: Tensor) -> Tensor:
        tensor = checkTensor(tensor)

        if tensor.requireGradient:
            self.tensor = tensor

        data = self.backend.transpose(tensor.data)
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            self.tensor.gradient = self.backend.transpose(gradient)
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Where(Operation):
    __slots__ = ['condition', 'tensor1', 'tensor2']

    def __init__(self) -> None:
        super().__init__()
        self.tensor1 = None
        self.tensor2 = None

    def forward(self, condition, tensor1: Tensor, tensor2: Tensor) -> Tensor:
        tensor1 = checkTensor(tensor1)
        tensor2 = checkTensor(tensor2)

        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            self.condition = condition
            self.tensor1 = tensor1
            self.tensor2 = tensor2

        data = self.backend.where(condition, tensor1.data, tensor2.data)
        return Tensor(data, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            self.tensor1.gradient = self.backend.multiply(gradient, self.condition)
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            self.tensor2.gradient = self.backend.multiply(gradient, self.backend.logical_not(self.condition))
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)


class Cumsum(OneTensor):
    def __init__(self, axis) -> None:
        super().__init__()
        self.axis = axis

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.cumsum(data, self.axis)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.cumsum(gradient, -self.axis)[::-1]


class Cumprod(OneTensor):
    def __init__(self, axis) -> None:
        super().__init__()
        self.axis = axis

    def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
        return self.backend.cumprod(data, self.axis)
    
    def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
        prod = self._operation(self.tensor.data)
        return self.backend.divide(gradient, prod)


#
# Not working correctly
#


class AsStrided(Operation):
    """
    An as_strided operation with backward pass for convolutional gradients
    """

    __slots__ = ['tensor', 'patches', 'shape', 'strides']

    def __init__(self) -> None:
        super().__init__()

    def forward(self, tensor: Tensor, shape=None, strides=None, subok=False) -> Tensor:
        tensor = checkTensor(tensor)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        self.shape = shape
        self.strides = strides
        self.patches = self.backend.as_strided(tensor.data, shape=shape, strides=strides, subok=False)
        gradientPatches = self.backend.as_strided(tensor.gradient, shape=shape, strides=strides, subok=False)

        return Tensor(data=self.patches, gradient=gradientPatches, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            # Sum up the gradient patches into the tensor gradient
            self.tensor.gradient = gradient.sum(tuple(self.backend.arange(gradient.ndim - self.tensor.ndim)))
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class SlidingWindow(Operation):
    """
    An as_strided operation with backward pass for convolutional gradients
    """

    __slots__ = ['tensor', 'patches', 'shape', 'axis']

    def __init__(self) -> None:
        super().__init__()

    def forward(self, tensor: Tensor, window_shape=None, axis=None, *, subok=False, writeable=True) -> Tensor:
        tensor = checkTensor(tensor)

        requireGradient = tensor.requireGradient
        if requireGradient:
            self.tensor = tensor

        self.shape = window_shape
        self.axis = axis
        self.patches = self.backend.sliding_window_view(tensor.data, window_shape=window_shape, axis=axis, subok=subok, writeable=writeable)
        gradientPatches = self.backend.sliding_window_view(tensor.gradient, window_shape=window_shape, axis=axis, subok=subok, writeable=writeable)

        return Tensor(data=self.patches, gradient=gradientPatches, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor and self.tensor.requireGradient:
            # Sum up the gradient patches into the tensor gradient
            self.tensor.gradient = gradient.sum(tuple(self.backend.range(gradient.ndim - self.tensor.data.ndim)))
            if self.tensor.gradientFunc:
                self.tensor.gradientFunc.backward(self.tensor.gradient)


class Einsum(Operation):
    """
    A placeholder einsum operation with backward pass for convolutional gradients
    """

    __slots__ = ['tensor1', 'tensor2', 'einsums']

    def __init__(self) -> None:
        super().__init__()

    def forward(self, tensor1: Tensor, tensor2: Tensor, optimize=False) -> Tensor:
        tensor1 = checkTensor(tensor1)
        tensor2 = checkTensor(tensor2)

        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            self.tensor1 = tensor1
            self.tensor2 = tensor2

        self.einsums = self.backend.einsum('bihwkl,oikl->bohw', tensor1.data, tensor2.data, optimize=optimize)
        return Tensor(self.einsums, requireGradient=requireGradient, gradientFunc=self)

    def backward(self, gradient) -> None:
        if self.tensor1 and self.tensor1.requireGradient:
            # Create gradient patches for tensor1
            self.tensor1.gradient = self.backend.as_strided(gradient,
                                                            shape=(*self.tensor1.data.shape, *self.tensor2.data.shape[-2:]),
                                                            strides=(*self.tensor1.data.strides, 0, 0))
            if self.tensor1.gradientFunc:
                self.tensor1.gradientFunc.backward(self.tensor1.gradient)

        if self.tensor2 and self.tensor2.requireGradient:
            # Create gradient patches for tensor2
            self.tensor2.gradient = self.backend.as_strided(gradient,
                                                            shape=(*self.tensor2.data.shape[:-2], *self.tensor1.data.shape[-2:]),
                                                            strides=(0, 0, *self.tensor1.data.strides[-2:]))
            if self.tensor2.gradientFunc:
                self.tensor2.gradientFunc.backward(self.tensor2.gradient)


#
# Mapping from Numpy to Tensor
#


ufuncMap = {
    np.add: Add,
    np.subtract: Subtract,
    np.multiply: Multiply,
    np.divide: Divide,
    np.matmul: Matmul,
    np.dot: Dot,
    np.power: Power,
    np.sqrt: Sqrt,
    np.log: Log,
    np.exp: Exp,
    np.sin: Sin,
    np.cos: Cos,
    np.cos: Tan,
    np.sinh: Sinh,
    np.cosh: Cosh,
    np.tanh: Tanh,
    np.abs: Abs,
    np.sign: Sign,
    np.positive: Positive,
    np.negative: Negative,
    np.maximum: Maximum,
    np.minimum: Minimum
}

funcMap = {
    np.sum: Sum,
    np.prod: Prod,
    np.repeat: Repeat,
    np.tile: Tile,
    np.max: Max,
    np.min: Min,
    np.mean: Mean,
    np.var: Var,
    np.std: Std,
    np.reshape: Reshape,
    np.transpose: Transpose,
    np.concatenate: Concatenate,
    np.hstack: Hstack,
    np.vstack: Vstack,
    np.dstack: Dstack,
    np.split: Split,
    np.hsplit: Hsplit,
    np.vsplit: Vsplit,
    np.dsplit: Dsplit,
    np.pad: Pad,
    np.insert: Insert,
    np.where: Where,
    np.einsum: Einsum
}