Newer
Older
import numpy as np
from numpy.typing import ArrayLike
from typing import Any, Callable
from abc import ABC, abstractmethod
from functools import partial
from .backend import BackendInterface, NumpyBackend, CupyBackend, NumbaBackend
class Tensor(object):
__slots__ = ['_backend', 'data', 'gradient', 'requireGradient', 'gradientFunc', 'batched']
__backend__ = NumpyBackend()
def __init__(self, data: Any,
gradient: Any = None,
gradientFunc: Callable = None,
requireGradient: bool = False,
batched: bool = True) -> None:
self._backend = Tensor.__backend__
#if isinstance(data, (list | np.ndarray)):
# data = self._backend.array(data)
#elif isinstance(data, (int, float)):
# data = self._backend.array([data])
#elif isinstance(data, self.__class__):
# gradient = data.gradient if gradient is None else gradient
# gradientFunc = data.gradientFunc if gradientFunc is None else gradientFunc
# requireGradient = data.requireGradient if requireGradient is False else requireGradient
# data = data.data
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#if len(data.shape) == 1:
# data = self._backend.reshape(data, (1, *data.shape))
#if gradient is None and requireGradient:
# # If gradient is not provided and it's required, initialize it as None
# gradient = self._backend.zeros_like(data)
#elif isinstance(gradient, (list, int, float)):
# gradient = self._backend.array(gradient)
# Checking if the shapes are the same
#if gradient is not None:
# assert data.shape == gradient.shape, "value and gradient must have the same shape"
self.data = data
self.gradient = gradient
self.requireGradient = requireGradient
self.gradientFunc = gradientFunc
self.batched = batched
def zeroGradient(self) -> None:
"""In-place operation for nulling the gradient"""
if self.requireGradient:
self.gradient = self._backend.zeros_like(self.data)
else:
raise AttributeError("this tensor is not differentiable")
def backward(self, gradient=None):
"""
Compute the gradients recursively by applying the chain rule.
"""
if gradient is None:
gradient = self._backend.ones_like(self.data)
if not self.requireGradient:
return
# If grad_fn is not set, this is probably the starting point for backpropagation,
# so we don't need to compute further backward.
if self.gradientFunc is None:
return
# Accumulate gradients instead of overwriting.
self.gradient += gradient
# Compute the local gradients using grad_fn
self.gradientFunc.backward(self.gradient)
def __repr__(self) -> str:
"""String representation."""
dataTitle = 'data:\n'
gradientTitle = 'gradient:\n'
dataStr = str(self.data)
gradientStr = str(self.gradient)
if self.requireGradient is True:
return dataTitle + dataStr + '\n' + gradientTitle + gradientStr
else:
return dataTitle + dataStr
def copy(self) -> 'Tensor':
data = self._backend.copy(self.data)
gradient = self._backend.copy(self.gradient)
return self.__class__(data, gradient, gradientFunc=self.gradientFunc, requireGradient=self.requireGradient)
@property
def strides(self) -> tuple:
return self.data.strides
def __len__(self) -> int:
"""Return the length of the value."""
return len(self.data)
@property
def shape(self) -> tuple:
"""Return the shape of the value."""
return self.data.shape
@property
def ndim(self) -> tuple:
"""Return the ndim of the value."""
return self.data.ndim
def reshape(self, newShape) -> 'Tensor':
return Reshape()(self, newShape)
def transpose(self) -> 'Tensor':
return Transpose()(self)
def T(self) -> 'Tensor':
return Transpose()(self)
def tolist(self) -> tuple[list, list] | list:
if self.requireGradient is True:
return self.data.tolist(), self.gradient.tolist()
else:
return self.data.tolist()
@classmethod
def setBackend(cls, backend: BackendInterface) -> None:
cls.__backend__ = backend
def __getitem__(self, index):
"""Get an item by index."""
if self.requireGradient is True and self.gradient:
return self.__class__(data=self.data[index], gradient=self.gradient[index], requireGradient=True, gradientFunc=self.gradientFunc)
elif self.requireGradient is True:
return self.__class__(data=self.data[index], requireGradient=True, gradientFunc=self.gradientFunc)
else:
return self.__class__(data=self.data[index], requireGradient=False)
def __setitem__(self, index, value) -> None:
"""Set the value of an item by index."""
if isinstance(value, self.__class__):
self.data[index] = value.data
if self.requireGradient is True and self.gradient:
self.gradient[index] = value.gradient
self.requireGradient = True
else:
self.data[index] = value
self.gradient[index] = 0
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if method == '__call__':
operation = ufuncMap.get(ufunc)
if operation is not None:
return operation()(*inputs, **kwargs)
raise NotImplementedError(f'{ufunc} is not implemented yet')
def __array_function__(self, func, types, args, kwargs):
operation = funcMap.get(func)
if operation is not None:
return operation()(*args, **kwargs)
raise NotImplementedError(f'{func} is not implemented yet')
return addForward(self, other)
return addForward(other, self)
result = addForward(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
return self
def __sub__(self, other: ArrayLike) -> 'Tensor':
return subtractForward(self, other)
return subtractForward(other, self)
result = subtractForward(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
return self
def __mul__(self, other: ArrayLike) -> 'Tensor':
return Multiply()(self, other)
def __rmul__(self, other: ArrayLike) -> 'Tensor':
return Multiply()(other, self)
def __imul__(self, other: ArrayLike) -> 'Tensor':
result = Multiply(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
return self
def __truediv__(self, other: ArrayLike) -> 'Tensor':
return Divide()(self, other)
def __rtruediv__(self, other: ArrayLike) -> 'Tensor':
return Divide()(other, self)
def __itruediv__(self, other: ArrayLike) -> 'Tensor':
result = Divide(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
return self
def __matmul__(self, other: ArrayLike) -> 'Tensor':
return Matmul()(self, other)
def __rmatmul__(self, other: ArrayLike) -> 'Tensor':
return Matmul()(other, self)
def __imatmul__(self, other: ArrayLike) -> 'Tensor':
result = Matmul(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
return self
def __pow__(self, other: ArrayLike) -> 'Tensor':
return Power()(self, other)
def __rpow__(self, other: ArrayLike) -> 'Tensor':
return Power()(other, self)
def __ipow__(self, other: ArrayLike) -> 'Tensor':
result = Power(self, other)
self.data = result.data
self.gradient = result.gradient
self.requireGradient = result.requireGradient
return self
def __abs__(self) -> 'Tensor':
return Abs()(self)
def __pos__(self) -> 'Tensor':
return Positive()(self)
def __neg__(self) -> 'Tensor':
return Negative()(self)
def __eq__(self, other) -> bool:
"""Equality comparison."""
return Equal()(self, other)
def __gt__(self, other) -> bool:
"""Greater than comparison."""
return Greater()(self, other)
def __ge__(self, other) -> bool:
"""Greater than or equal to comparison."""
return GreaterEqual()(self, other)
def __lt__(self, other) -> bool:
"""Less than comparison."""
return Less()(self, other)
def __le__(self, other) -> bool:
"""Less than or equal to comparison."""
return LessEqual()(self, other)
def checkTensor(tensor: Tensor) -> Tensor:
if isinstance(tensor, Tensor):
return tensor
return Tensor(tensor)
#
# Operations
#
class Operation(ABC):
__slots__ = ['name', 'operationID', 'backend']
id = 0
__backend__ = Tensor.__backend__
def __init__(self) -> None:
self.name = self.__class__.__name__
self.operationID = Operation.id
self.backend = Operation.__backend__
Operation.id += 1
@abstractmethod
def forward(self, *args, **kwargs) -> Tensor:
raise NotImplementedError
@abstractmethod
def backward(self, gradient: np.ndarray) -> None:
raise NotImplementedError
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def __repr__(self) -> str:
return f'{self.name}, {self.operationID}'
def at(self, tensor: Tensor, indices, value) -> None:
# not ready for use yet
tensor = self.forward(indices, value)
class TwoTensors(Operation):
__slots__ = ['tensor1', 'tensor2']
def __init__(self) -> None:
super().__init__()
self.tensor1 = None
self.tensor2 = None
self.tensor1BroadcastAxis = None
self.tensor2BroadcastAxis = None
def getbroadcastAxid(self, data, gradient) -> None:
# Store old shapes
tensorShape = np.array(data.shape)
# Get new shape
gradientShape = np.array(gradient.shape)
# Prepend ones to the shape of the smaller array
if len(tensorShape) < len(gradientShape):
tensorShape = np.pad(tensorShape, (len(gradientShape) - len(tensorShape), 0), mode='constant', constant_values=1)
elif len(tensorShape) > len(gradientShape):
gradientShape = np.pad(gradientShape, (len(tensorShape) - len(gradientShape), 0), mode='constant', constant_values=1)
# Find broadcasted axes
tensorBroadcastAxis = np.where(tensorShape != gradientShape)[0]
# Change broadcastAxis variables to None if they're empty
if tensorBroadcastAxis.size == 0:
tensorBroadcastAxis = None
return tensorBroadcastAxis
def forward(self, tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
if not isinstance(tensor1, Tensor):
tensor1 = Tensor(tensor1)
if not isinstance(tensor2, Tensor):
tensor2 = Tensor(tensor2)
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
self.tensor1 = tensor1
self.tensor2 = tensor2
data = self._operation(tensor1.data, tensor2.data, *args, **kwargs)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor1 and self.tensor1.requireGradient:
gradientForTensor1 = self.backend.copy(gradient)
tensorBroadcastAxis = self.getbroadcastAxid(self.tensor1, gradientForTensor1)
if tensorBroadcastAxis is not None:
gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
self.tensor1.gradient = self._derivativeD1(gradientForTensor1)
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
gradientForTensor2 = self.backend.copy(gradient)
tensorBroadcastAxis = self.getbroadcastAxid(self.tensor2, gradientForTensor2)
if tensorBroadcastAxis is not None:
gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
self.tensor2.gradient = self._derivativeD2(gradientForTensor2)
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
@abstractmethod
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
raise NotImplementedError
@abstractmethod
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
raise NotImplementedError
@abstractmethod
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
raise NotImplementedError
class OneTensor(Operation):
__slots__ = ['tensor']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, *args, **kwargs) -> Tensor:
if not isinstance(tensor, Tensor):
tensor = Tensor(tensor)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self._operation(tensor.data, *args, **kwargs)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self._derivative(gradient)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
@abstractmethod
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
raise NotImplementedError
@abstractmethod
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
raise NotImplementedError
#
# Two Tensors
#
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
def getbroadcastAxid(data, gradient) -> None:
# Store old shapes
tensorShape = np.array(data.shape)
# Get new shape
gradientShape = np.array(gradient.shape)
# Prepend ones to the shape of the smaller array
if len(tensorShape) < len(gradientShape):
tensorShape = np.pad(tensorShape, (len(gradientShape) - len(tensorShape), 0), mode='constant', constant_values=1)
elif len(tensorShape) > len(gradientShape):
gradientShape = np.pad(gradientShape, (len(tensorShape) - len(gradientShape), 0), mode='constant', constant_values=1)
# Find broadcasted axes
tensorBroadcastAxis = np.where(tensorShape != gradientShape)[0]
# Change broadcastAxis variables to None if they're empty
if tensorBroadcastAxis.size == 0:
tensorBroadcastAxis = None
return tensorBroadcastAxis
def addForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
if not isinstance(tensor1, Tensor):
tensor1 = Tensor(tensor1)
if not isinstance(tensor2, Tensor):
tensor2 = Tensor(tensor2)
data = np.add(tensor1.data, tensor2.data, *args, **kwargs)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
gradfunc = partial(addBackward, tensor1, tensor2)
return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
def addBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
if tensor1 and tensor1.requireGradient:
gradientForTensor1 = np.copy(gradient)
tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
if tensorBroadcastAxis is not None:
gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
tensor1.gradient = np.add(tensor1.gradient, gradient)
if tensor1.gradientFunc:
tensor1.gradientFunc.backward(tensor1.gradient)
if tensor2 and tensor2.requireGradient:
gradientForTensor2 = np.copy(gradient)
tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
if tensorBroadcastAxis is not None:
gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
tensor2.gradient = np.add(tensor2.gradient, gradient)
if tensor2.gradientFunc:
tensor2.gradientFunc.backward(tensor2.gradient)
class Add(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(data1, data2, *args, **kwargs)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor1.gradient, gradient)
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor2.gradient, gradient)
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
def subtractForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
if not isinstance(tensor1, Tensor):
tensor1 = Tensor(tensor1)
if not isinstance(tensor2, Tensor):
tensor2 = Tensor(tensor2)
data = np.subtract(tensor1.data, tensor2.data, *args, **kwargs)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
gradfunc = partial(addBackward, tensor1, tensor2)
return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
def subtractBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
if tensor1 and tensor1.requireGradient:
gradientForTensor1 = np.copy(gradient)
tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
if tensorBroadcastAxis is not None:
gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
tensor1.gradient = np.add(tensor1.gradient, gradient)
if tensor1.gradientFunc:
tensor1.gradientFunc.backward(tensor1.gradient)
if tensor2 and tensor2.requireGradient:
gradientForTensor2 = np.copy(gradient)
tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
if tensorBroadcastAxis is not None:
gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
tensor2.gradient = np.subtract(tensor2.gradient, gradient)
if tensor2.gradientFunc:
tensor2.gradientFunc.backward(tensor2.gradient)
class Subtract(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.subtract(data1, data2, *args, **kwargs)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor1.gradient, gradient)
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.subtract(self.tensor2.gradient, gradient)
class Multiply(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(data1, data2, *args, **kwargs)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor1.gradient, self.backend.multiply(self.tensor2.data, gradient))
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor2.gradient, self.backend.multiply(self.tensor1.data, gradient))
class Divide(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.divide(data1, data2, *args, **kwargs)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor1.gradient, self.backend.divide(gradient, self.tensor2.data))
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.subtract(self.tensor2.gradient, self.backend.divide(self.backend.multiply(self.tensor1.data, gradient), self.backend.power(self.tensor2.data, 2)))
class Matmul(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.matmul(data1, data2, *args, **kwargs)
# Update the backward pass to handle batch dimension
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
if len(self.tensor1.data.shape) > 2 or len(self.tensor2.data.shape) > 2:
return self.backend.add(self.tensor1.gradient, self.backend.matmul(gradient, self.backend.transpose(self.tensor2.data, axes=(0, 2, 1))))
else:
return self.backend.add(self.tensor1.gradient, self.backend.matmul(gradient, self.backend.transpose(self.tensor2.data)))
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
if len(self.tensor1.data.shape) > 2 or len(self.tensor2.data.shape) > 2:
return self.backend.add(self.tensor2.gradient, self.backend.matmul(self.backend.transpose(self.tensor1.data, axes=(0, 2, 1)), gradient))
else:
return self.backend.add(self.tensor2.gradient, self.backend.matmul(self.backend.transpose(self.tensor1.data), gradient))
def backward(self, gradient: np.ndarray) -> None:
if self.tensor1 and self.tensor1.requireGradient:
gradientForTensor1 = self.backend.copy(gradient)
self.tensor1.gradient = self._derivativeD1(gradientForTensor1)
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
gradientForTensor2 = self.backend.copy(gradient)
self.tensor2.gradient = self._derivativeD2(gradientForTensor2)
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
class Dot(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.dot(data1, data2)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.tensor2.data, gradient)
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.tensor1.data, gradient)
class Power(TwoTensors):
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.power(data1, data2)
def _derivativeD1(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor1.gradient, self.backend.multiply(self.backend.multiply(self.tensor2.data, self.backend.power(self.tensor1.data, (self.backend.subtract(self.tensor2.data, 1)))), gradient))
def _derivativeD2(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor2.gradient, self.backend.multiply(self.backend.multiply(self.backend.log(self.tensor1.data), self.backend.power(self.tensor1.data, self.tensor2.data)), gradient))
#
# Single Tensor
#
class Square(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.square(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.multiply(self.tensor.data, 2.0), gradient)
class Sqrt(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.sqrt(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.divide(0.5, self.backend.sqrt(self.tensor.data)), gradient)
class Log(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.log(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.add(self.tensor.gradient, self.backend.multiply((self.backend.divide(1, self.tensor.data)), gradient))
class Exp(OneTensor):
__slots__ = ['data']
def __init__(self) -> None:
super().__init__()
self.data = None
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
self.data = self.backend.exp(data, *args, **kwargs)
return self.data
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.data * gradient
class Sin(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.sin(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.cos(self.tensor.data), gradient)
class Cos(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.cos(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.negative(self.backend.multiply(self.backend.sin(self.tensor.data), gradient))
class Tan(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.tan(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply((self.backend.divide(1, self.backend.power(np.cos(self.tensor.data), 2))), gradient)
class Sinh(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.sinh(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.cosh(self.tensor.data), gradient)
class Cosh(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.cosh(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.sinh(self.tensor.data), gradient)
class Tanh(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.tanh(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply((self.backend.divide(1, self.backend.power(np.cosh(self.tensor.data), 2))), gradient)
class Abs(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.abs(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.sign(self.tensor.data), gradient)
#
# Signs
#
class Sign(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.sign(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.sign(self.tensor.data), gradient)
class Positive(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.positive(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.positive(self.tensor.data), gradient)
class Negative(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.negative(data, *args, **kwargs)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.backend.negative(self.tensor.data), gradient)
#
# Compare
#
class Equal(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
self.bools = None
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.equal(data1, data2)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
class NotEqual(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
self.bools = self.backend.not_equal(data1, data2)
return self.bools
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
class Less(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
self.bools = self.backend.less(data1, data2)
return self.bools
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
class LessEqual(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
self.bools = self.backend.less_equal(data1, data2)
return self.bools
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
class Greater(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
self.bools = self.backend.greater(data1, data2)
return self.bools
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
class GreaterEqual(TwoTensors):
__slots__ = ['bools']
def __init__(self) -> None:
super().__init__()
def _operation(self, data1: np.ndarray, data2: np.ndarray, *args, **kwargs) -> np.ndarray:
self.bools = self.backend.greater_equal(data1, data2)
return self.bools
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.multiply(self.bools, gradient)
#
# Shaping
#
class Flatten(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.reshape(data, newshape=(-1))
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.reshape(gradient, newshape=self.tensor.shape)
class Reshape(OneTensor):
def __init__(self) -> None:
super().__init__()
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.reshape(data, *args, **kwargs)
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.reshape(gradient, newshape=self.tensor.shape)
#
# Broadcasting
#
class Repeat(Operation):
__slots__ = ['repeats', 'axis', 'tensor']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, repeats: ArrayLike, axis: int = None) -> Tensor:
tensor = checkTensor(tensor)
self.repeats = repeats
self.axis = axis
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self.backend.repeat(tensor.data, repeats=self.repeats, axis=self.axis)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
if self.axis is None:
sum_axis = tuple(range(gradient.ndim)[::-self.repeats])
counts = np.prod(self.repeats)
else:
sum_axis = self.axis
counts = self.repeats
grad = self.backend.sum(gradient, axis=sum_axis, keepdims=True)
grad = self.backend.divide(grad, counts)
self.tensor.gradient = self.backend.broadcast_to(grad, self.tensor.shape)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Tile(Operation):
__slots__ = ['tensor', 'reps']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, reps: ArrayLike) -> Tensor:
tensor = checkTensor(tensor)
self.reps = reps
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self.backend.tile(tensor.data, reps=self.reps)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
reshaped = self.backend.reshape(gradient, self.tensor.shape + self.reps)
axis = tuple(range(self.tensor.ndim, gradient.ndim))
self.tensor.gradient = self.backend.sum(reshaped, axis=axis)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Concatenate(Operation):
__slots__ = ['tensors', 'axis', 'out', 'dtype', 'casting', 'shapes']
def __init__(self) -> None:
super().__init__()
self.tensors = None
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
def forward(self, tensors: Tensor, axis=0, out=None, dtype=None, casting='same_kind') -> Tensor:
self.axis = axis
self.out = out
self.dtype = dtype
self.casting = casting
tensors = [checkTensor(tensor) for tensor in tensors]
requireGradient = any(tensor.requireGradient for tensor in tensors)
if requireGradient:
self.tensors = tensors
self.shapes = [tensor.shape for tensor in tensors]
data = self.backend.concatenate([tensor.data for tensor in tensors], axis=self.axis, out=self.out, dtype=self.dtype, casting=self.casting)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
grads = self.backend.split(gradient, self.backend.cumsum([shape[self.axis] for shape in self.shapes[:-1]]), axis=self.axis)
for tensor, grad in zip(self.tensors, grads):
if tensor.requireGradient:
tensor.gradient = grad
if tensor.gradientFunc:
tensor.gradientFunc.backward(tensor.gradient)
class Hstack(Concatenate):
def __init__(self):
super().__init__()
def forward(self, tensors: Tensor, dtype=None, casting='same_kind'):
return super().forward(tensors, axis=1, out=None, dtype=dtype, casting=casting)
class Vstack(Concatenate):
def __init__(self, dtype=None, casting='same_kind'):
super().__init__()
def forward(self, tensors: Tensor, dtype=None, casting='same_kind'):
return super().forward(tensors, axis=0, out=None, dtype=dtype, casting=casting)
class Dstack(Concatenate):
def __init__(self):
super().__init__()
def forward(self, tensors: Tensor):
return super().forward(tensors, axis=2)
class Split(Operation):
__slots__ = ['tensor', 'indices', 'axis']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor, indices_or_sections, axis=0) -> list[Tensor]:
tensor = checkTensor(tensor)
self.indices = indices_or_sections
self.axis = axis
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self.backend.split(tensor.data, self.indices, self.axis)
return [Tensor(datum, requireGradient=requireGradient, gradientFunc=self) for datum in data]
def backward(self, gradient: np.ndarray) -> None:
gradient = self.backend.concatenate(gradient, axis=self.axis)
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = gradient
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Hsplit(Split):
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensors: Tensor, indices_or_sections):
return super().forward(tensors, indices_or_sections=indices_or_sections, axis=1)
class Vsplit(Split):
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensors: Tensor, indices_or_sections):
return super().forward(tensors, indices_or_sections=indices_or_sections, axis=0)
class Dsplit(Split):
def __init__(self) -> None:
super().__init__()
self.tensor = None
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
def forward(self, tensors: Tensor, indices_or_sections):
return super().forward(tensors, indices_or_sections=indices_or_sections, axis=2)
#
# Reduce
#
class Sum(Operation):
__slots__ = ['tensor']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, dtype=None, keepdims=False, **kwargs) -> Tensor:
tensor = checkTensor(tensor)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self.backend.sum(tensor.data, axis=axis, dtype=dtype, keepdims=keepdims)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.broadcast_to(gradient.T, self.tensor.shape)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Prod(Operation):
__slots__ = ['tensor', 'product']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, dtype=None, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = tensor.data
self.product = self.backend.prod(data, axis=axis, dtype=dtype, keepdims=keepdims)
return Tensor(self.product, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
tensorNoneZero = self.backend.where(self.tensor.data != 0, self.tensor.data, 1)
self.tensor.gradient = self.backend.multiply(gradient, self.backend.divide(self.product, tensorNoneZero))
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
#
# Minimum/Maximum etc
#
class Maximum(Operation):
__slots__ = ['tensor1', 'tensor2', 'data']
def __init__(self):
super().__init__()
self.tensor1 = None
self.tensor2 = None
def forward(self, tensor1: Tensor, tensor2: Tensor, out=None, where=True, casting='same_kind', oder='k', dtype=None, subhok=True) -> Tensor:
tensor1 = checkTensor(tensor1)
tensor2 = checkTensor(tensor2)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
self.tensor1 = tensor1
self.tensor2 = tensor2
self.data = self.backend.maximum(tensor1.data, tensor2.data, out=out, where=where, casting=casting, oder=oder, dtype=dtype, subhok=subhok)
return Tensor(self.data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor1 and self.tensor1.requireGradient:
# A mask that is True where tensor1 had the maximum value, False elsewhere
mask = (self.tensor1.data == self.data)
self.tensor1.gradient = self.backend.multiply(gradient, mask)
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
# A mask that is True where tensor2 had the maximum value, False elsewhere
mask = (self.tensor2.data == self.data)
self.tensor2.gradient = self.backend.multiply(gradient, mask)
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
class Minimum(Operation):
__slots__ = ['tensor1', 'tensor2', 'data']
def __init__(self):
super().__init__()
self.tensor1 = None
self.tensor2 = None
def forward(self, tensor1: Tensor, tensor2: Tensor, out=None, where=True, casting='same_kind', oder='k', dtype=None, subhok=True) -> Tensor:
tensor1 = checkTensor(tensor1)
tensor2 = checkTensor(tensor2)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
self.tensor1 = tensor1
self.tensor2 = tensor2
self.data = self.backend.minium(tensor1.data, tensor2.data, out=out, where=where, casting=casting, oder=oder, dtype=dtype, subhok=subhok)
return Tensor(self.data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor1 and self.tensor1.requireGradient:
# A mask that is True where tensor1 had the minimum value, False elsewhere
mask = (self.tensor1.data == self.data)
self.tensor1.gradient = self.backend.multiply(gradient, mask)
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
# A mask that is True where tensor2 had the minimum value, False elsewhere
mask = (self.tensor2.data == self.data)
self.tensor2.gradient = self.backend.multiply(gradient, mask)
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
#
# Min/Max etc
#
class Max(Operation):
__slots__ = ['tensor', 'mask']
def __init__(self):
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
data = self.backend.max(tensor.data, axis=axis, keepdims=keepdims)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.mask = (tensor.data == self.backend.broadcast_to(data, tensor.shape))
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.multiply(self.mask, gradient)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Min(Operation):
__slots__ = ['tensor', 'mask']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
data = self.backend.min(tensor.data, axis=axis, keepdims=keepdims)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.mask = (tensor.data == self.backend.broadcast_to(data, tensor.shape))
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.multiply(self.mask, gradient)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Mean(Operation):
__slots__ = ['tensor', 'divisor']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
data = self.backend.mean(tensor.data, axis=axis, keepdims=keepdims)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
if axis is None:
self.divisor = self.backend.prod(tensor.shape)
elif isinstance(axis, int):
self.divisor = self.backend.prod(tensor.shape[axis])
else:
self.divisor = self.backend.prod([tensor.shape[i] for i in axis])
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.divide(gradient, self.divisor)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Var(Operation):
__slots__ = ['tensor', 'divisor', 'diff']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, ddof=0, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
data = self.backend.var(tensor.data, axis=axis, ddof=ddof, keepdims=keepdims)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.diff = self.backend.subtract(tensor.data, self.backend.mean(tensor.data, axis=axis, keepdims=True))
if axis is None:
self.divisor = self.backend.subtract(self.backend.prod(tensor.shape), ddof)
elif isinstance(axis, int):
self.divisor = self.backend.subtract(self.backend.prod(tensor.shape[axis]), ddof)
else:
self.divisor = self.backend.subtract(self.backend.prod([tensor.shape[i] for i in axis]), ddof)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.multiply(self.backend.multiply(self.backend.divide(2.0, self.divisor), self.diff), gradient)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Std(Operation):
__slots__ = ['tensor', 'divisor', 'diff']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, axis=None, keepdims=False) -> Tensor:
tensor = checkTensor(tensor)
data = self.backend.std(tensor.data, axis=axis, keepdims=keepdims)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.diff = self.backend.subtract(tensor.data, self.backend.mean(tensor.data, axis=axis, keepdims=True))
if axis is None:
self.divisor = self.backend.prod(tensor.shape)
elif isinstance(axis, int):
self.divisor = self.backend.prod(tensor.shape[axis])
else:
self.divisor = self.backend.prod([tensor.shape[i] for i in axis])
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient: np.ndarray) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.multiply(gradient, self.backend.divide(self.diff, self.backend.multiply(self.divisor, self.tensor.data)))
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
#
# Others
#
class Pad(Operation):
__slots__ = ['tensor', 'padding', 'mode', 'constant_values']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, pad_with, mode='constant', constant_values=0) -> Tensor:
tensor = checkTensor(tensor)
self.padding = pad_with
self.mode = mode
self.constant_values = constant_values
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
data = self.backend.pad(tensor.data, self.padding, mode=self.mode, constant_values=self.constant_values)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
slices = tuple(slice(pad[0], -pad[1] if pad[1] != 0 else None) for pad in self.padding)
self.tensor.gradient = gradient[slices]
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Insert(Operation):
__slots__ = ['tensor', 'values', 'index']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor, values: Tensor, index: ArrayLike) -> Tensor:
self.index = index
tensor = checkTensor(tensor)
values = checkTensor(values)
requireGradient = tensor.requireGradient or values.requireGradient
if requireGradient:
self.tensor = tensor
self.values = values
data = self.backend.insert(tensor.data, self.index, values.data)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.delete(gradient, self.index)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
if self.values and self.values.requireGradient:
self.values.gradient = gradient[self.index]
if self.values.gradientFunc:
self.values.gradientFunc.backward(self.values.gradient)
class Transpose(Operation):
__slots__ = ['tensor']
def __init__(self) -> None:
super().__init__()
self.tensor = None
def forward(self, tensor: Tensor) -> Tensor:
tensor = checkTensor(tensor)
if tensor.requireGradient:
self.tensor = tensor
data = self.backend.transpose(tensor.data)
return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
self.tensor.gradient = self.backend.transpose(gradient)
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Where(Operation):
__slots__ = ['condition', 'tensor1', 'tensor2']
def __init__(self) -> None:
super().__init__()
self.tensor1 = None
self.tensor2 = None
def forward(self, condition, tensor1: Tensor, tensor2: Tensor) -> Tensor:
tensor1 = checkTensor(tensor1)
tensor2 = checkTensor(tensor2)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
self.condition = condition
self.tensor1 = tensor1
self.tensor2 = tensor2
data = self.backend.where(condition, tensor1.data, tensor2.data)
return Tensor(data, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor1 and self.tensor1.requireGradient:
self.tensor1.gradient = self.backend.multiply(gradient, self.condition)
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
self.tensor2.gradient = self.backend.multiply(gradient, self.backend.logical_not(self.condition))
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
class Cumsum(OneTensor):
def __init__(self, axis) -> None:
super().__init__()
self.axis = axis
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.cumsum(data, self.axis)
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.cumsum(gradient, -self.axis)[::-1]
class Cumprod(OneTensor):
def __init__(self, axis) -> None:
super().__init__()
self.axis = axis
def _operation(self, data: np.ndarray, *args, **kwargs) -> np.ndarray:
return self.backend.cumprod(data, self.axis)
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
def _derivative(self, gradient: np.ndarray, *args, **kwargs) -> np.ndarray:
prod = self._operation(self.tensor.data)
return self.backend.divide(gradient, prod)
#
# Not working correctly
#
class AsStrided(Operation):
"""
An as_strided operation with backward pass for convolutional gradients
"""
__slots__ = ['tensor', 'patches', 'shape', 'strides']
def __init__(self) -> None:
super().__init__()
def forward(self, tensor: Tensor, shape=None, strides=None, subok=False) -> Tensor:
tensor = checkTensor(tensor)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.shape = shape
self.strides = strides
self.patches = self.backend.as_strided(tensor.data, shape=shape, strides=strides, subok=False)
gradientPatches = self.backend.as_strided(tensor.gradient, shape=shape, strides=strides, subok=False)
return Tensor(data=self.patches, gradient=gradientPatches, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
# Sum up the gradient patches into the tensor gradient
self.tensor.gradient = gradient.sum(tuple(self.backend.arange(gradient.ndim - self.tensor.ndim)))
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class SlidingWindow(Operation):
"""
An as_strided operation with backward pass for convolutional gradients
"""
__slots__ = ['tensor', 'patches', 'shape', 'axis']
def __init__(self) -> None:
super().__init__()
def forward(self, tensor: Tensor, window_shape=None, axis=None, *, subok=False, writeable=True) -> Tensor:
tensor = checkTensor(tensor)
requireGradient = tensor.requireGradient
if requireGradient:
self.tensor = tensor
self.shape = window_shape
self.axis = axis
self.patches = self.backend.sliding_window_view(tensor.data, window_shape=window_shape, axis=axis, subok=subok, writeable=writeable)
gradientPatches = self.backend.sliding_window_view(tensor.gradient, window_shape=window_shape, axis=axis, subok=subok, writeable=writeable)
return Tensor(data=self.patches, gradient=gradientPatches, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor and self.tensor.requireGradient:
# Sum up the gradient patches into the tensor gradient
self.tensor.gradient = gradient.sum(tuple(self.backend.range(gradient.ndim - self.tensor.data.ndim)))
if self.tensor.gradientFunc:
self.tensor.gradientFunc.backward(self.tensor.gradient)
class Einsum(Operation):
"""
A placeholder einsum operation with backward pass for convolutional gradients
"""
__slots__ = ['tensor1', 'tensor2', 'einsums']
def __init__(self) -> None:
super().__init__()
def forward(self, tensor1: Tensor, tensor2: Tensor, optimize=False) -> Tensor:
tensor1 = checkTensor(tensor1)
tensor2 = checkTensor(tensor2)
requireGradient = tensor1.requireGradient or tensor2.requireGradient
if requireGradient:
self.tensor1 = tensor1
self.tensor2 = tensor2
self.einsums = self.backend.einsum('bihwkl,oikl->bohw', tensor1.data, tensor2.data, optimize=optimize)
return Tensor(self.einsums, requireGradient=requireGradient, gradientFunc=self)
def backward(self, gradient) -> None:
if self.tensor1 and self.tensor1.requireGradient:
# Create gradient patches for tensor1
self.tensor1.gradient = self.backend.as_strided(gradient,
shape=(*self.tensor1.data.shape, *self.tensor2.data.shape[-2:]),
strides=(*self.tensor1.data.strides, 0, 0))
if self.tensor1.gradientFunc:
self.tensor1.gradientFunc.backward(self.tensor1.gradient)
if self.tensor2 and self.tensor2.requireGradient:
# Create gradient patches for tensor2
self.tensor2.gradient = self.backend.as_strided(gradient,
shape=(*self.tensor2.data.shape[:-2], *self.tensor1.data.shape[-2:]),
strides=(0, 0, *self.tensor1.data.strides[-2:]))
if self.tensor2.gradientFunc:
self.tensor2.gradientFunc.backward(self.tensor2.gradient)
#
# Mapping from Numpy to Tensor
#
ufuncMap = {
np.add: Add,
np.subtract: Subtract,
np.multiply: Multiply,
np.divide: Divide,
np.matmul: Matmul,
np.dot: Dot,
np.power: Power,
np.sqrt: Sqrt,
np.log: Log,
np.exp: Exp,
np.sin: Sin,
np.cos: Cos,
np.cos: Tan,
np.sinh: Sinh,
np.cosh: Cosh,
np.tanh: Tanh,
np.abs: Abs,
np.sign: Sign,
np.positive: Positive,
np.negative: Negative,
np.maximum: Maximum,
np.minimum: Minimum
}
funcMap = {
np.sum: Sum,
np.prod: Prod,
np.repeat: Repeat,
np.tile: Tile,
np.max: Max,
np.min: Min,
np.mean: Mean,
np.var: Var,
np.std: Std,
np.reshape: Reshape,
np.transpose: Transpose,
np.concatenate: Concatenate,
np.hstack: Hstack,
np.vstack: Vstack,
np.dstack: Dstack,
np.split: Split,
np.hsplit: Hsplit,
np.vsplit: Vsplit,
np.dsplit: Dsplit,
np.pad: Pad,
np.insert: Insert,
np.where: Where,
np.einsum: Einsum
}