Skip to content
Snippets Groups Projects
tensor.py 68.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • johannes bilk's avatar
    johannes bilk committed
    import numpy as np
    from numpy.typing import ArrayLike
    from typing import Any, Callable
    from abc import ABC, abstractmethod
    
    johannes bilk's avatar
    johannes bilk committed
    from .backend import BackendInterface, NumpyBackend, CupyBackend, NumbaBackend
    
    
    class Tensor(object):
        __slots__ = ['_backend', 'data', 'gradient', 'requireGradient', 'gradientFunc', 'batched']
    
        __backend__ = NumpyBackend()
    
        def __init__(self, data: Any,
                     gradient: Any = None,
                     gradientFunc: Callable = None,
                     requireGradient: bool = False,
                     batched: bool = True) -> None:
    
            self._backend = Tensor.__backend__
    
            #if isinstance(data, (list | np.ndarray)):
            #    data = self._backend.array(data)
            #elif isinstance(data, (int, float)):
            #    data = self._backend.array([data])
            #elif isinstance(data, self.__class__):
            #    gradient = data.gradient if gradient is None else gradient
            #    gradientFunc = data.gradientFunc if gradientFunc is None else gradientFunc
            #    requireGradient = data.requireGradient if requireGradient is False else requireGradient
            #    data = data.data
    
    johannes bilk's avatar
    johannes bilk committed
            #if len(data.shape) == 1:
            #    data = self._backend.reshape(data, (1, *data.shape))
    
            #if gradient is None and requireGradient:
            #    # If gradient is not provided and it's required, initialize it as None
            #    gradient = self._backend.zeros_like(data)
            #elif isinstance(gradient, (list, int, float)):
            #    gradient = self._backend.array(gradient)
    
            # Checking if the shapes are the same
            #if gradient is not None:
            #    assert data.shape == gradient.shape, "value and gradient must have the same shape"
    
            self.data = data
            self.gradient = gradient
            self.requireGradient = requireGradient
            self.gradientFunc = gradientFunc
            self.batched = batched
    
        def zeroGradient(self) -> None:
            """In-place operation for nulling the gradient"""
            if self.requireGradient:
                self.gradient = self._backend.zeros_like(self.data)
            else:
                raise AttributeError("this tensor is not differentiable")
    
        def backward(self, gradient=None):
            """
            Compute the gradients recursively by applying the chain rule.
            """
            if gradient is None:
                gradient = self._backend.ones_like(self.data)
    
            if not self.requireGradient:
                return
    
            # If grad_fn is not set, this is probably the starting point for backpropagation,
            # so we don't need to compute further backward.
            if self.gradientFunc is None:
                return
    
            # Accumulate gradients instead of overwriting.
            self.gradient += gradient
            # Compute the local gradients using grad_fn
            self.gradientFunc.backward(self.gradient)
    
        def __repr__(self) -> str:
            """String representation."""
            dataTitle = 'data:\n'
            gradientTitle = 'gradient:\n'
            dataStr = str(self.data)
            gradientStr = str(self.gradient)
            if self.requireGradient is True:
                return dataTitle + dataStr + '\n' + gradientTitle + gradientStr
            else:
                return dataTitle + dataStr
    
        def copy(self) -> 'Tensor':
            data = self._backend.copy(self.data)
            gradient = self._backend.copy(self.gradient)
            return self.__class__(data, gradient, gradientFunc=self.gradientFunc, requireGradient=self.requireGradient)
    
        @property
        def strides(self) -> tuple:
            return self.data.strides
    
        def __len__(self) -> int:
            """Return the length of the value."""
            return len(self.data)
    
        @property
        def shape(self) -> tuple:
            """Return the shape of the value."""
            return self.data.shape
    
    johannes bilk's avatar
    johannes bilk committed
        @property
        def ndim(self) -> tuple:
            """Return the ndim of the value."""
            return self.data.ndim
    
    
        def reshape(self, newshape) -> 'Tensor':
            return reshapeForward(self, newshape)
    
    johannes bilk's avatar
    johannes bilk committed
        def transpose(self) -> 'Tensor':
    
            return transposeForward(self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def T(self) -> 'Tensor':
    
            return transposeForward(self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def tolist(self) -> tuple[list, list] | list:
            if self.requireGradient is True:
                return self.data.tolist(), self.gradient.tolist()
            else:
                return self.data.tolist()
    
        @classmethod
        def setBackend(cls, backend: BackendInterface) -> None:
    
            if isinstance(backend, BackendInterface):
                cls.__backend__ = backend
            else:
                raise TypeError(f"{backend} is not an backend")
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __getitem__(self, index):
            """Get an item by index."""
    
            if self.requireGradient is True and self.gradient:
    
    johannes bilk's avatar
    johannes bilk committed
                return self.__class__(data=self.data[index], gradient=self.gradient[index], requireGradient=True, gradientFunc=self.gradientFunc)
    
            elif self.requireGradient is True:
                return self.__class__(data=self.data[index], requireGradient=True, gradientFunc=self.gradientFunc)
    
    johannes bilk's avatar
    johannes bilk committed
            else:
                return self.__class__(data=self.data[index], requireGradient=False)
    
        def __setitem__(self, index, value) -> None:
            """Set the value of an item by index."""
            if isinstance(value, self.__class__):
                self.data[index] = value.data
    
                if self.requireGradient is True and self.gradient:
    
    johannes bilk's avatar
    johannes bilk committed
                    self.gradient[index] = value.gradient
                    self.requireGradient = True
            else:
                self.data[index] = value
                self.gradient[index] = 0
    
        def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
            if method == '__call__':
                operation = ufuncMap.get(ufunc)
                if operation is not None:
                    return operation()(*inputs, **kwargs)
            raise NotImplementedError(f'{ufunc} is not implemented yet')
    
        def __array_function__(self, func, types, args, kwargs):
            operation = funcMap.get(func)
            if operation is not None:
                return operation()(*args, **kwargs)
            raise NotImplementedError(f'{func} is not implemented yet')
    
    johannes bilk's avatar
    johannes bilk committed
        def __add__(self, other: ArrayLike) -> 'Tensor':
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __radd__(self, other: ArrayLike) -> 'Tensor':
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __iadd__(self, other: ArrayLike) -> 'Tensor':
    
            result = addForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __sub__(self, other: ArrayLike) -> 'Tensor':
    
            return subtractForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __rsub__(self, other: ArrayLike) -> 'Tensor':
    
            return subtractForward(other, self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __isub__(self, other: ArrayLike) -> 'Tensor':
    
            result = subtractForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __mul__(self, other: ArrayLike) -> 'Tensor':
    
            return multiplyForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __rmul__(self, other: ArrayLike) -> 'Tensor':
    
            return multiplyForward(other, self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __imul__(self, other: ArrayLike) -> 'Tensor':
    
            result = multiplyForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __truediv__(self, other: ArrayLike) -> 'Tensor':
    
            return divideForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __rtruediv__(self, other: ArrayLike) -> 'Tensor':
    
            return divideForward(other, self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __itruediv__(self, other: ArrayLike) -> 'Tensor':
    
            result = divideForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __matmul__(self, other: ArrayLike) -> 'Tensor':
    
            return matmulForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __rmatmul__(self, other: ArrayLike) -> 'Tensor':
    
            return matmulForward(other, self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __imatmul__(self, other: ArrayLike) -> 'Tensor':
    
            result = matmulForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __pow__(self, other: ArrayLike) -> 'Tensor':
    
            return powerForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __rpow__(self, other: ArrayLike) -> 'Tensor':
    
            return powerForward(other, self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __ipow__(self, other: ArrayLike) -> 'Tensor':
    
            result = powerForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
            self.data = result.data
            self.gradient = result.gradient
            self.requireGradient = result.requireGradient
            return self
    
        def __abs__(self) -> 'Tensor':
    
            return absForward(self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __pos__(self) -> 'Tensor':
    
            return positiveForward(self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __neg__(self) -> 'Tensor':
    
            return negativeForward(self)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __eq__(self, other) -> bool:
            """Equality comparison."""
    
            return equalForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __gt__(self, other) -> bool:
            """Greater than comparison."""
    
            return greaterForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __ge__(self, other) -> bool:
            """Greater than or equal to comparison."""
    
            return greaterEqualForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __lt__(self, other) -> bool:
            """Less than comparison."""
    
            return lessForward(self, other)
    
    johannes bilk's avatar
    johannes bilk committed
    
        def __le__(self, other) -> bool:
            """Less than or equal to comparison."""
    
            return lessEqualForward(self, other)
    
        def sum(axis=None, dtype=None, keepdims=False) -> 'Tensor':
            return sumForward(self, axis, dtype, keepdims)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        def prod(axis=None, dtype=None, keepdims=False) -> 'Tensor':
            return prodForward(self, axis, dtype, keepdims)
    
        def max(axis=None, keepdims=False) -> 'Tensor':
            return maxForward(self, axis, keepdims)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        def min(axis=None, keepdims=False) -> 'Tensor':
            return minForward(self, axis, keepdims)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        def mean(axis=None, keepdims=False) -> 'Tensor':
            return meanForward(self, axis, keepdims)
    
        def var(axis=None, ddof=0, keepdims=False) -> 'Tensor':
            return varForward(self, axis, ddof, keepdims)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        def std(axis=None, keepdims=False) -> 'Tensor':
            return stdForward(self, axis, keepdims)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def checkTensor(tensor: Tensor) -> Tensor:
        if isinstance(tensor, Tensor):
            return tensor
        return Tensor(tensor)
    
    def getbroadcastAxid(data, gradient) -> None:
        # Store old shapes
        tensorShape = np.array(data.shape)
    
        # Get new shape
        gradientShape = np.array(gradient.shape)
    
        # Prepend ones to the shape of the smaller array
        if len(tensorShape) < len(gradientShape):
            tensorShape = np.pad(tensorShape, (len(gradientShape) - len(tensorShape), 0), mode='constant', constant_values=1)
        elif len(tensorShape) > len(gradientShape):
            gradientShape = np.pad(gradientShape, (len(tensorShape) - len(gradientShape), 0), mode='constant', constant_values=1)
    
        # Find broadcasted axes
        tensorBroadcastAxis = np.where(tensorShape != gradientShape)[0]
    
        # Change broadcastAxis variables to None if they're empty
        if tensorBroadcastAxis.size == 0:
            tensorBroadcastAxis = None
    
        return tensorBroadcastAxis
    
    
    def addForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
        data = np.add(tensor1.data, tensor2.data, *args, **kwargs)
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(addBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    
    
    def addBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
    
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor1.gradient = np.add(tensor1.gradient, gradient)
            if tensor1.gradientFunc:
    
                tensor1.gradientFunc(tensor1.gradient)
    
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor2.gradient = np.add(tensor2.gradient, gradient)
            if tensor2.gradientFunc:
    
                tensor2.gradientFunc(tensor2.gradient)
    
    def subtractForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
        data = np.subtract(tensor1.data, tensor2.data, *args, **kwargs)
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
    
            gradfunc = partial(subtractBackward, tensor1, tensor2)
    
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    
    
    def subtractBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
    
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor1.gradient = np.add(tensor1.gradient, gradient)
            if tensor1.gradientFunc:
    
                tensor1.gradientFunc(tensor1.gradient)
    
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor2.gradient = np.subtract(tensor2.gradient, gradient)
            if tensor2.gradientFunc:
    
                tensor2.gradientFunc(tensor2.gradient)
    
    def multiplyForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.multiply(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(multiplyBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    def multiplyBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor1.gradient = np.add(tensor1.gradient, np.multiply(tensor2.data, gradient))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor2.gradient = np.add(tensor2.gradient, np.multiply(tensor1.data, gradient))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    def divideForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
        data = np.divide(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(divideBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def divideBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor1.gradient = np.add(tensor1.gradient, np.divide(gradient, tensor2.data))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor2.gradient = np.subtract(tensor2.gradient, np.divide(np.multiply(tensor1.data, gradient), np.power(tensor2.data, 2)))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    def matmulForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.matmul(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(matmulBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    def matmulBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
            if len(tensor1.data.shape) > 2 or len(tensor2.data.shape) > 2:
                tensor1.gradient = np.add(tensor1.gradient, np.matmul(gradient, np.transpose(tensor2.data, axes=(0, 2, 1))))
            else:
                tensor1.gradient = np.add(tensor1.gradient, np.matmul(gradient, np.transpose(tensor2.data)))
    
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            if len(tensor1.data.shape) > 2 or len(tensor2.data.shape) > 2:
                tensor2.gradient = np.add(tensor2.gradient, np.matmul(np.transpose(tensor1.data, axes=(0, 2, 1)), gradient))
            else:
                tensor2.gradient = np.add(tensor2.gradient, np.matmul(np.transpose(tensor1.data), gradient))
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    def dotForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
        data = np.dot(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(dotBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    def dotBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor1.gradient = np.add(tensor1.gradient, np.multiply(tensor2.data, gradient))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor2.gradient = np.subtract(tensor2.gradient, np.multiply(tensor1.data, gradient))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def powerForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.power(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(powerBackward, tensor1, tensor2)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    def powerBackward(tensor1: Tensor, tensor2: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor1.gradient = np.add(tensor1.gradient, np.multiply(np.multiply(tensor2.data, np.power(tensor1.data, (np.subtract(tensor2.data, 1)))), gradient))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor2.gradient = np.add(tensor2.gradient, np.multiply(np.multiply(np.log(tensor1.data), np.power(tensor1.data, tensor2.data)), gradient))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    #
    # Single Tensor
    #
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def squareForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.square(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(squareBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def squareBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.multiply(tensor.data, 2.0), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def sqrtForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.sqrt(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(sqrtBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def sqrtBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(np.divide(gradient, np.multiply(2, np.sqrt(tensor.data))))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def logForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
        data = np.log(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(logBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def logBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply((np.divide(1, tensor.data)), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def expForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.exp(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(expBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def expBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(np.multiply(np.exp(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def sinForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
        data = np.sin(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(sinBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def sinBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(np.multiply(np.cos(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def cosForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.cos(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(cosBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def cosBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.subtract(np.multiply(np.sin(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def tanForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.tan(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(tanBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def tanBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply((np.divide(1, np.power(np.cos(tensor.data), 2))), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def sinhForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
        data = np.sinh(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(sinhBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def sinhBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.cosh(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def coshForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.cosh(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(coshBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def coshBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.sinh(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def tanhForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.tanh(tensor.data, *args, **kwargs)
    
        if tensor.requireGradient:
            gradfunc = partial(tanhBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def tanhBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply((np.divide(1, np.power(np.cosh(tensor.data), 2))), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def absForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
        data = np.abs(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(absBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def absBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.sign(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    # Signs
    
    def signForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.sign(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(signBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def signBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.sign(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def positiveForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.positive(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(positiveBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def positiveBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.positive(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    def negativeForward(tensor: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor, Tensor):
            tensor = Tensor(tensor)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.negative(tensor.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor.requireGradient:
            gradfunc = partial(negativeBackward, tensor)
            return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=tensor.requireGradient, gradientFunc=None)
    
    def negativeBackward(tensor: Tensor, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor and tensor.requireGradient:
            tensor.gradient = np.add(tensor.gradient, np.multiply(np.negative(tensor.data), gradient))
            if tensor.gradientFunc:
                tensor.gradientFunc(tensor.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def equalForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.equal(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(equalBackward, tensor1, tensor2, data)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def equalBackward(tensor1: Tensor, tensor2: Tensor, bools: np.ndarray, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor1.gradient = np.add(tensor1.gradient, np.multiply(bools, gradient))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor2.gradient = np.add(tensor2.gradient, np.multiply(bools, gradient))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def notEqualForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.not_equal(tensor1.data, tensor2.data, *args, **kwargs)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(notEqualBackward, tensor1, tensor2, data)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
    def notEqualBackward(tensor1: Tensor, tensor2: Tensor, bools: np.ndarray, gradient: np.ndarray, *args, **kwargs) -> None:
        if tensor1 and tensor1.requireGradient:
            gradientForTensor1 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor1, gradientForTensor1)
            if tensorBroadcastAxis is not None:
                gradientForTensor1 = np.sum(gradientForTensor1, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensor1.gradient = np.add(tensor1.gradient, np.multiply(bools, gradient))
            if tensor1.gradientFunc:
                tensor1.gradientFunc(tensor1.gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        if tensor2 and tensor2.requireGradient:
            gradientForTensor2 = np.copy(gradient)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
            tensorBroadcastAxis = getbroadcastAxid(tensor2, gradientForTensor2)
            if tensorBroadcastAxis is not None:
                gradientForTensor2 = np.sum(gradientForTensor2, axis=tuple(tensorBroadcastAxis), keepdims=True)
    
            tensor2.gradient = np.add(tensor2.gradient, np.multiply(bools, gradient))
            if tensor2.gradientFunc:
                tensor2.gradientFunc(tensor2.gradient)
    
    def lessForward(tensor1: Tensor, tensor2: Tensor, *args, **kwargs) -> Tensor:
        if not isinstance(tensor1, Tensor):
            tensor1 = Tensor(tensor1)
        if not isinstance(tensor2, Tensor):
            tensor2 = Tensor(tensor2)
    
    johannes bilk's avatar
    johannes bilk committed
    
    
        data = np.less(tensor1.data, tensor2.data, *args, **kwargs)
    
        requireGradient = tensor1.requireGradient or tensor2.requireGradient
        if requireGradient:
            gradfunc = partial(lessBackward, tensor1, tensor2, data)
            return Tensor(data, requireGradient=requireGradient, gradientFunc=gradfunc)
    
        return Tensor(data, requireGradient=requireGradient, gradientFunc=None)