Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
from numpy.typing import ArrayLike
from uproot import TTree
from ..common import extractMatrix
class ClustersFromDigits:
"""
A class intended for reconstructing pxd cluster parameters from digit information
"""
def __init__(self) -> None:
# these are the sensor IDs of the pxd modules/panels from the root file, they are
# use to identify on which panels a cluster event happened
self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280,
9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304,
16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])
# u/v position min/max for layer 1 & 2, they are needed for reconstructing roi unselected cluster locations
# it's the upper and lower bound of a u/v postion on a per sensor id
self.uFit = {8480: np.poly1d([ 0.005 , -0.6228546]),
8512: np.poly1d([ 0.005 , -0.62285449]),
8736: np.poly1d([ 0.005 , -0.6228546]),
8768: np.poly1d([ 0.005 , -0.62285449]),
8992: np.poly1d([ 0.005 , -0.6228546]),
9024: np.poly1d([ 0.005 , -0.62285449]),
9248: np.poly1d([ 0.005 , -0.6228546]),
9280: np.poly1d([ 0.005 , -0.62285449]),
9504: np.poly1d([ 0.005 , -0.6228546]),
9536: np.poly1d([ 0.005 , -0.62285449]),
9760: np.poly1d([ 0.005 , -0.6228546]),
9792: np.poly1d([ 0.005 , -0.62285449]),
10016: np.poly1d([ 0.005 , -0.6228546]),
10048: np.poly1d([ 0.005 , -0.62285449]),
10272: np.poly1d([ 0.005 , -0.6228546]),
10304: np.poly1d([ 0.005 , -0.62285449]),
16672: np.poly1d([ 0.005 , -0.62285456]),
16704: np.poly1d([ 0.005 , -0.62285445]),
16928: np.poly1d([ 0.005 , -0.62285456]),
16960: np.poly1d([ 0.005 , -0.62285446]),
17184: np.poly1d([ 0.005 , -0.62285456]),
17216: np.poly1d([ 0.005 , -0.62285446]),
17440: np.poly1d([ 0.005 , -0.62285456]),
17472: np.poly1d([ 0.005 , -0.62285446]),
17696: np.poly1d([ 0.005 , -0.62285456]),
17728: np.poly1d([ 0.005 , -0.62285446]),
17952: np.poly1d([ 0.005 , -0.62285456]),
17984: np.poly1d([ 0.005 , -0.62285446]),
18208: np.poly1d([ 0.005 , -0.62285456]),
18240: np.poly1d([ 0.005 , -0.62285446]),
18464: np.poly1d([ 0.005 , -0.62285456]),
18496: np.poly1d([ 0.005 , -0.62285446]),
18720: np.poly1d([ 0.005 , -0.62285456]),
18752: np.poly1d([ 0.005 , -0.62285446]),
18976: np.poly1d([ 0.005 , -0.62285456]),
19008: np.poly1d([ 0.005 , -0.62285446]),
19232: np.poly1d([ 0.005 , -0.62285456]),
19264: np.poly1d([ 0.005 , -0.62285446]),
19488: np.poly1d([ 0.005 , -0.62285456]),
19520: np.poly1d([ 0.005 , -0.62285445])}
self.vFit = {8480: np.poly1d([ 0.00587037, -2.29395374]),
8512: np.poly1d([ 0.00587037, -2.20862039]),
8736: np.poly1d([ 0.00587037, -2.29395374]),
8768: np.poly1d([ 0.00587037, -2.20862039]),
8992: np.poly1d([ 0.00587037, -2.29395375]),
9024: np.poly1d([ 0.00587037, -2.20862039]),
9248: np.poly1d([ 0.00587037, -2.29395375]),
9280: np.poly1d([ 0.00587037, -2.20862039]),
9504: np.poly1d([ 0.00587037, -2.29395375]),
9536: np.poly1d([ 0.00587037, -2.20862039]),
9760: np.poly1d([ 0.00587037, -2.29395375]),
9792: np.poly1d([ 0.00587037, -2.2086204 ]),
10016: np.poly1d([ 0.00587037, -2.29395375]),
10048: np.poly1d([ 0.00587037, -2.20862039]),
10272: np.poly1d([ 0.00587037, -2.29395375]),
10304: np.poly1d([ 0.00587037, -2.20862039]),
16672: np.poly1d([ 1.44676145e-06, 7.00144541e-03, -3.09694398e+00]),
16704: np.poly1d([-1.44676141e-06, 9.22077745e-03, -3.12427848e+00]),
16928: np.poly1d([ 1.44676147e-06, 7.00144538e-03, -3.09694398e+00]),
16960: np.poly1d([-1.44676141e-06, 9.22077745e-03, -3.12427848e+00]),
17184: np.poly1d([ 1.44676151e-06, 7.00144535e-03, -3.09694397e+00]),
17216: np.poly1d([-1.44676138e-06, 9.22077742e-03, -3.12427847e+00]),
17440: np.poly1d([ 1.44676148e-06, 7.00144538e-03, -3.09694398e+00]),
17472: np.poly1d([-1.44676141e-06, 9.22077744e-03, -3.12427848e+00]),
17696: np.poly1d([ 1.44676154e-06, 7.00144533e-03, -3.09694397e+00]),
17728: np.poly1d([-1.44676144e-06, 9.22077747e-03, -3.12427849e+00]),
17952: np.poly1d([ 1.44676148e-06, 7.00144539e-03, -3.09694398e+00]),
17984: np.poly1d([-1.44676143e-06, 9.22077746e-03, -3.12427848e+00]),
18208: np.poly1d([ 1.44676142e-06, 7.00144543e-03, -3.09694399e+00]),
18240: np.poly1d([-1.44676147e-06, 9.22077748e-03, -3.12427848e+00]),
18464: np.poly1d([ 1.44676148e-06, 7.00144539e-03, -3.09694398e+00]),
18496: np.poly1d([-1.44676139e-06, 9.22077742e-03, -3.12427847e+00]),
18720: np.poly1d([ 1.44676152e-06, 7.00144535e-03, -3.09694397e+00]),
18752: np.poly1d([-1.44676141e-06, 9.22077744e-03, -3.12427848e+00]),
18976: np.poly1d([ 1.44676153e-06, 7.00144534e-03, -3.09694397e+00]),
19008: np.poly1d([-1.44676139e-06, 9.22077743e-03, -3.12427848e+00]),
19232: np.poly1d([ 1.44676152e-06, 7.00144537e-03, -3.09694398e+00]),
19264: np.poly1d([-1.44676145e-06, 9.22077748e-03, -3.12427849e+00]),
19488: np.poly1d([ 1.44676150e-06, 7.00144538e-03, -3.09694398e+00]),
19520: np.poly1d([-1.44676143e-06, 9.22077746e-03, -3.12427848e+00])}
self.digitsInKeys = { 'sensorID': 'PXDDigits/PXDDigits.m_sensorID',
'uCellID': 'PXDDigits/PXDDigits.m_uCellID',
'vCellID': 'PXDDigits/PXDDigits.m_vCellID',
'cellCharge': 'PXDDigits/PXDDigits.m_charge'}
self.digitsOutKeys = { 'sensorID': 'PXDDigitsOUT/PXDDigitsOUT.m_sensorID',
'uCellID': 'PXDDigitsOUT/PXDDigitsOUT.m_uCellID',
'vCellID': 'PXDDigitsOUT/PXDDigitsOUT.m_vCellID',
'cellCharge': 'PXDDigitsOUT/PXDDigitsOUT.m_charge'}
def branches(self, *, includeUnselected: bool = False) -> list:
if includeUnselected is True:
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
return list((self.digitsInKeys | self.digitsOutKeys).values())
return list(self.digitsInKeys.values())
def _pixelToUV(self, uvIndex: tuple[int], sensorID: int) -> float:
"""
Convert pixel indices to u/v positions based on sensor ID.
Parameters:
- uvIndex (tuple[int]): The u/v pixel index.
- sensorID (int): The sensor ID.
Returns:
- tuple[float]: The u/v positions.
"""
uMapped = self.uFit[sensorID](uvIndex[0])
vMapped = self.vFit[sensorID](uvIndex[1])
# Calculate and return the u/v positions for the given pixel index
return uMapped, vMapped
def get(self, eventTree: TTree, inOut: str = 'inROI') -> dict:
"""
Wrapper method to get cluster data.
Parameters:
- eventTree (TTree): The input event tree containing digit information.
Returns:
- dict: A dictionary containing processed cluster data.
"""
uCellIDs, vCellIDs, cellCharges, clusterSensorIDs = self._selectKeys(eventTree, inOut=inOut)
return self._process(uCellIDs, vCellIDs, cellCharges, clusterSensorIDs)
def _selectKeys(self, eventTree: TTree, inOut: str = 'inROI') -> tuple:
"""
grabbing the relavent arrays from the event tree
I seperated this out to shorten the already lengthy '_process' method
"""
if inOut == 'inROI':
digits = eventTree.arrays(self.digitsInKeys.values(), library='np')
uCellIDs = digits[self.digitsInKeys['uCellID']]
vCellIDs = digits[self.digitsInKeys['vCellID']]
cellCharges = digits[self.digitsInKeys['cellCharge']]
clusterSensorIDs = digits[self.digitsInKeys['sensorID']]
else:
digits = eventTree.arrays(self.digitsOutKeys.values(), library='np')
uCellIDs = digits[self.digitsOutKeys['uCellID']]
vCellIDs = digits[self.digitsOutKeys['vCellID']]
cellCharges = digits[self.digitsOutKeys['cellCharge']]
clusterSensorIDs = digits[self.digitsOutKeys['sensorID']]
return uCellIDs, vCellIDs, cellCharges, clusterSensorIDs
def _process(self, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, clusterSensorIDs: ArrayLike) -> dict:
"""
Common method to process either clusters or digits based on the given processType.
Parameters:
- eventTree (TTree): The input event tree containing digit information.
- processType (str): The type of processing to perform ('clusters' or 'digits').
Returns:
- dict: A dictionary containing processed data.
"""
# Initialize variables
eventNumbers = []
uPositions, vPositions = [], []
uSizes, vSizes, clsSizes = [], [], []
uCells, vCells, cCharges = [], [], []
seedCharges, clsCharges = [], []
sensorIDs = []
# Loop through each cell charge to populate matrices and process data
for i in range(len(clusterSensorIDs)):
# Initialize and populate the matrix
matrixLadder = np.zeros((250, 768))
matrixLadder[uCellIDs[i], vCellIDs[i]] = cellCharges[i]
sensorID = clusterSensorIDs[i]
xx, yy = uCellIDs[i], vCellIDs[i]
# checking if no pixels overlap
assert len(yy) == len(sensorID), f"event: {i}, yy: {len(yy)}, sensorID: {len(sensorID)}"
assert len(xx) == len(sensorID), f"event: {i}, xx: {len(xx)}, sensorID: {len(sensorID)}"
#print(i, len(sensorID), len(cellCharges))
# here I store all pixels, that have already been visited
knownPixels = {id: set() for id in self.panelIDs}
for x, y, id in zip(xx, yy, sensorID):
if (x, y) in knownPixels[id]:
continue
eventNumbers.append(i)
sensorIDs.append(id)
matrix, xLower, yLower = extractMatrix(matrixLadder, x, y)
vv, uu = np.nonzero(matrix)
cCharges.append(matrix[vv, uu].astype(int))
vCells.append(vv + xLower)
uCells.append(uu + yLower)
seedCharges.append(matrix[4,4].astype(int))
clsCharges.append(np.sum(matrix).astype(int))
clsSizes.append(np.count_nonzero(matrix))
vSizes.append(len(vv))
uSizes.append(len(uu))
# Convert local indices of non-zero pixels to global indices
globalNonzeroX = vv + xLower
globalNonzeroY = uu + yLower
# Update knownPixels with the global coordinates of the non-zero pixels
knownPixels[id].update(zip(globalNonzeroX, globalNonzeroY))
# Append these global (u, v) positions to their respective lists
uPosition, vPosition = self._coordinates(x, y, id)
uPositions.append(uPosition)
vPositions.append(vPosition)
return {
'eventNumber': np.array(eventNumbers).astype(int),
'clsCharge': np.array(clsCharges).astype(int),
'seedCharge': np.array(seedCharges).astype(int),
'clsSize': np.array(clsSizes).astype(int),
'uSize': np.array(uSizes).astype(int),
'vSize': np.array(vSizes).astype(int),
'uPosition': np.array(uPositions),
'vPosition': np.array(vPositions),
'sensorID': np.array(sensorIDs).astype(int),
'uCellIDs': np.array(uCells, dtype=object),
'vCellIDs': np.array(vCells, dtype=object),
'cellCharges': np.array(cCharges, dtype=object)
}
def _coordinates(self, x: int, y: int, id: int) -> tuple[float, float]:
# Assuming the center pixel is at local coordinates (4, 4) in the 9x9 matrix
# and you have the global coordinates (x, y) of the top-left corner of this 9x9 matrix
centerLocalX, centerLocalY = 4, 4
centerGlobalX, centerGlobalY = x + centerLocalX, y + centerLocalY
# Now convert this global center pixel position to (u, v) coordinates
return self._pixelToUV((centerGlobalX, centerGlobalY), id)