You need to sign in or sign up before continuing.
Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import uproot as ur
class fromRoot:
def __init__(self):
# panel ids werden benutzt um layer und lader zu bestimmen und um u/v zu kartesisch um zu rechnen
self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280,
9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304,
16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472,
17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496,
18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520])
# die koordinaten verschiebung der u/v koordinaten in korrekte panel position
self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255],
[ 1.3985 , 0.23238491, -0.88255],
[ 0.80146531, 1.17631236, 3.68255],
[ 0.82407264, 1.15370502, -0.88255],
[-0.2582769 , 1.3985 , 3.68255],
[-0.2322286 , 1.3985 , -0.88255],
[-1.17531186, 0.80246583, 3.68255 ],
[-1.15510614, 0.82267151, -0.88255],
[-1.3985 , -0.2645974 , 3.68255],
[-1.3985 , -0.23012119, -0.88255],
[-0.80591227, -1.17186534, 3.68255],
[-0.82344228, -1.15433536, -0.88255],
[ 0.26975836, -1.3985 , 3.68255],
[ 0.23326624, -1.3985 , -0.88255],
[ 1.1746111 , -0.80316652, 3.68255],
[ 1.15205703, -0.82572062, -0.88255],
[ 2.2015 , 0.26959865, 5.01305],
[ 2.2015 , 0.2524582 , -1.21305],
[ 1.77559093, 1.32758398, 5.01305],
[ 1.78212569, 1.31626522, -1.21305],
[ 0.87798948, 2.03516717, 5.01305],
[ 0.88478563, 2.03124357, -1.21305],
[-0.26129975, 2.2015 , 5.01305],
[-0.25184137, 2.2015 , -1.21305],
[-1.32416655, 1.77756402, 5.01305],
[-1.31417539, 1.78333226, -1.21305],
[-2.03421133, 0.87964512, 5.01305],
[-2.02960691, 0.88762038, -1.21305],
[-2.2015 , -0.25954151, 5.01305],
[-2.2015 , -0.24969109, -1.21305],
[-1.77636043, -1.32625112, 5.01305],
[-1.78138268, -1.31755219, -1.21305],
[-0.87493138, -2.03693277, 5.01305 ],
[-0.8912978 , -2.02748378, -1.21305],
[ 0.26489725, -2.2015 , 5.01305],
[ 0.25364439, -2.2015 , -1.21305],
[ 1.3269198 , -1.7759744 , 5.01305],
[ 1.32258793, -1.77847528, -1.21305],
[ 2.03616649, -0.87625871, 5.01305],
[ 2.02936825, -0.8880338 , -1.21305]])
# drehwinkel um panels korrekt auszurichten
self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360,
360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210,
240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420,
420])
# ladder und layer ids
self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])
self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21])
# generierung der look-up tabels für u/v -> x/y/z transformation
self.transformation = {}
self.layersLadders = {}
for i in range(len(self.panelIDs)):
self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]]
self.layersLadders[str(self.panelIDs[i])] = [panelLayer[i], panelLadder[i]]
def loadData(self, file, path='.'):
self.eventTree = ur.open(f'{path}/{file}.root:tree')
# liest den event tree aus, man muss das voll schlüsselwort angeben
def getData(self, keyword: str):
try:
return self.eventTree.arrays(keyword, library='np')[keyword]
except:
return KeyError
# generiert für jeden cluster eine event nummer
def genEventNumbers(self, clusters):
eventNumbers = []
for i in range(len(clusters)):
eventNumbers.append(np.array([i]*len(clusters[i])))
return flatten(eventNumbers)
# organisiert mc und digit daten aller events um, sodass sie zu clustern passen
def getEventData(self, relations, *args):
returnList = []
for i in range(len(args)):
stuffList = []
for item in relations:
stuffList.append([0] * len(item))
returnList.append(stuffList)
for i, references in enumerate(relations):
for k, index in enumerate(references):
for j in range(len(args)):
returnList[j][i][k] = args[j][index]
if len(returnList) == 1:
return returnList[0]
else:
return returnList
def flatten(self, structure, max_depth=None, current_depth=0):
flat_list = []
for element in structure:
if isinstance(element, (list, np.ndarray)) and (max_depth is None or current_depth < max_depth):
flat_list.extend(self.flatten(element, max_depth, current_depth + 1))
else:
flat_list.append(element)
return np.array(flat_list, dtype=object)
# generiert alle pixel matrizen aller events
def getClustersFlattened(self, uCellIDs, vCellIDs, cellCharges, clusterDigits, matrixSize=(9,9)):
length = 0
start = 0
for item in cellCharges:
length += len(item)
events = [0] * length
plotRange = int(np.round(matrixSize[0]/2)), int(np.round(matrixSize[1]/2))
for event in range(len(cellCharges)):
adcValues = []
digitsU = uCellIDs[event]
digitsV = vCellIDs[event]
digitsCharge = cellCharges[event]
digitIndices = clusterDigits[event]
for indices in digitIndices:
cacheImg = np.zeros(matrixSize)
maxChargeIndex = digitsCharge[indices].argmax()
uMax = digitsU[indices[maxChargeIndex]]
vMax = digitsV[indices[maxChargeIndex]]
for index in indices:
uPos = digitsU[index]
vPos = digitsV[index]
uu = int(uPos) - int(uMax) + plotRange[0]
vv = int(vPos) - int(vMax) + plotRange[1]
if uu >= 0 and uu < matrixSize[0] and vv >= 0 and vv < matrixSize[1]:
cacheImg[uu,vv] = digitsCharge[index]
adcValues.append(cacheImg)
stop = len(adcValues)
events[start:start+stop] = adcValues
start += stop
return np.array(events, dtype=object)
# rotiert und verschiebt eine Koordinate
def rotShiftVector(self, vector, angle, shift=[0,0,0], scale=1):
theta = np.deg2rad(angle)
rotMatrix = np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])
scaleMatrix = np.array([[1,0,0],[0,1,0],[0,0,scale]])
return rotMatrix.dot(scaleMatrix.dot(vector)) + shift
# berechnet die koordinaten aller Events
def getCartesianFlattened(self, uPositions, vPositions, sensorIDs, transformations: dict):
length = 0
start = 0
for item in sensorIDs:
length += len(item)
xArr, yArr, zArr = [0] * length, [0] * length, [0] * length
for event in range(len(sensorIDs)):
xyz = []
uPos = uPositions[event]
vPos = vPositions[event]
sensors = sensorIDs[event]
points = np.vstack((uPos, np.zeros(len(uPos)), vPos)).T
for point, id in zip(points, sensors):
shift, angle = transformations[str(id)]
shifted = rotShiftVector(point, angle, shift)
xyz.append(shifted)
if len(xyz) > 0:
stop = len(xyz)
xArr[start:start+stop] = np.array(xyz)[:,0]
yArr[start:start+stop] = np.array(xyz)[:,1]
zArr[start:start+stop] = np.array(xyz)[:,2]
start += stop
return np.array(xArr, dtype=object), np.array(yArr, dtype=object), np.array(zArr, dtype=object)
# bestimmt die layer und ladder nummer eines events
def getLayers(self, sensorIDs, layersLadders: dict):
layers, ladders = [], []
for id in sensorIDs:
layer, ladder = layersLadders[str(id)]
layers.append(layer)
ladders.append(ladder)
return np.array(layers), np.array(ladders)
# findet die fehlenden event referenzen in mc daten, setzt sie gleich -1
def findMissing(self, lst: list, length: int) -> list:
return sorted(set(range(0, length)) - set(lst))
# füllt die mc-cluster beziehungs arrays mit fehlenden werten auf
def fillMCList(self, fromClusters, toClusters, length):
missingIndex = findMissing(fromClusters, length)
testList = [-1] * length
fillIndex = 0
for i in range(len(testList)):
if i in missingIndex:
testList[i] = -1
else:
try:
testList[i] = int(toClusters[fillIndex])
except TypeError:
testList[i] = int(toClusters[fillIndex][0])
fillIndex += 1
return testList
# organisiert mc daten eines events um
def getMCData(self, toClusters, pdgs, xMom, yMom, zMom):
pxList, pyList, pzList = [], [], []
pdgList = []
for references in toClusters:
if references == -1:
pxList.append(0)
pyList.append(0)
pzList.append(0)
pdgList.append(0)
else:
pxList.append(xMom[references])
pyList.append(yMom[references])
pzList.append(zMom[references])
pdgList.append(pdgs[references])
return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list)