import numpy as np from .module import Module from .sequential import Sequential from .parallel import Parallel from .optim import Optimizer from .loss import LossFunction from .scheduler import Scheduler from data.dataLoader import DataLoader from utility.progressbar import Progressbar from .layer import Layer from importlib import import_module from inspect import signature class Network(object): """ this class uses modules together with loss functions and optimizers to handel the full neural network stack """ def __init__(self): self.name = self.__class__.__name__ self.module = Sequential() self.lossFunc = None self.optim = None self.scheduler = None @property def qualifiedName(self) -> tuple: return self.__class__.__module__, self.__class__.__name__ def setComponent(self, component: Optimizer | LossFunction | Scheduler) -> None: if isinstance(component, Optimizer): self.optim = component elif isinstance(component, LossFunction): self.lossFunc = component elif isinstance(component, Scheduler): self.scheduler = component else: raise TypeError("The given component is not a valid type") def append(self, layer: Layer, mode: str = 's') -> None: if mode == 's': if isinstance(self.module[-1], Parallel) and len(self.module[-1]) <= 1: toPop = self.module[-1][0] self.module.pop(-1) self.module.append(toPop) self.module.append(layer) if mode == 'p': if isinstance(self.module[-1], Parallel): self.module[-1].append(layer) else: self.module.append(Parallel()) self.module[-1].append(layer) def __call__(self, input: np.ndarray) -> np.ndarray: """ this makes using this class more convenient """ return self.forward(input) def forward(self, input: np.ndarray) -> np.ndarray: self.module.forward(input) def backward(self, gradient: np.ndarray) -> np.ndarray: self.module.backward(gradient) def trainMode(self) -> None: """ sets every layer in the module into train mode """ self.module.train() def evalMode(self) -> None: """ sets every layer in the module into eval mode """ self.module.eval() def __str__(self): printString = "" printString += self.optim.name + ": " + str(self.optim.learningRate) + "\n" if self.scheduler is not None: printString += self.scheduler.name + "\n" printString += self.lossFunc.name + "\n" printString += str(self.module) def train(self, data: DataLoader, epochs: int) -> None: metrics = NetworkObservables(epochs) epochs = epochs for i in range(epochs): data.trainMode() self.trainMode() length = len(data) bar = Progressbar(f'epoch {str(i+1).zfill(len(str(epochs)))}/{epochs}', length, 55) losses = [] for item in data: inputs = item['data'] labels = item['labels'] prediction = network(inputs) losses.append(self.loss(prediction, labels)) gradient = self.loss.backward() self.optim.step(gradient) bar.step() data.evalMode() self.evalMode() accuracies = [] valLosses = [] for item in data: inputs = item['data'] labels = item['labels'] prediction = network(inputs) valLosses.append(self.loss(prediction, labels)) accuracies.append(np.sum(prediction.argmax(1) == labels.argmax(1)) / len(prediction)) bar.step() metrics.update('losses', np.mean(losses)) metrics.update('validation', np.mean(valLosses)) metrics.update('accuracy', np.mean(accuracies)) metrics.update('learningRate', self.optim.learningRate) metrics.print() metrics.step() data.fold() if self.scheduler is not None: self.scheduler.step() def eval(self, data: DataLoader) -> np.ndarray: self.evalEval() length = len(data) bar = Progressbar('evaluation', length) predictions = [] for item in data: inputs = item['data'] labels = item['labels'] predictions.append(network(inputs)) bar.step() return np.concatnate(predictions) def __getitem__(self, index): return self.module[index]