import numpy as np import uproot as ur class fromRoot: def __init__(self): # panel ids werden benutzt um layer und lader zu bestimmen und um u/v zu kartesisch um zu rechnen self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280, 9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304, 16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472, 17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496, 18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520]) # die koordinaten verschiebung der u/v koordinaten in korrekte panel position self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255], [ 1.3985 , 0.23238491, -0.88255], [ 0.80146531, 1.17631236, 3.68255], [ 0.82407264, 1.15370502, -0.88255], [-0.2582769 , 1.3985 , 3.68255], [-0.2322286 , 1.3985 , -0.88255], [-1.17531186, 0.80246583, 3.68255 ], [-1.15510614, 0.82267151, -0.88255], [-1.3985 , -0.2645974 , 3.68255], [-1.3985 , -0.23012119, -0.88255], [-0.80591227, -1.17186534, 3.68255], [-0.82344228, -1.15433536, -0.88255], [ 0.26975836, -1.3985 , 3.68255], [ 0.23326624, -1.3985 , -0.88255], [ 1.1746111 , -0.80316652, 3.68255], [ 1.15205703, -0.82572062, -0.88255], [ 2.2015 , 0.26959865, 5.01305], [ 2.2015 , 0.2524582 , -1.21305], [ 1.77559093, 1.32758398, 5.01305], [ 1.78212569, 1.31626522, -1.21305], [ 0.87798948, 2.03516717, 5.01305], [ 0.88478563, 2.03124357, -1.21305], [-0.26129975, 2.2015 , 5.01305], [-0.25184137, 2.2015 , -1.21305], [-1.32416655, 1.77756402, 5.01305], [-1.31417539, 1.78333226, -1.21305], [-2.03421133, 0.87964512, 5.01305], [-2.02960691, 0.88762038, -1.21305], [-2.2015 , -0.25954151, 5.01305], [-2.2015 , -0.24969109, -1.21305], [-1.77636043, -1.32625112, 5.01305], [-1.78138268, -1.31755219, -1.21305], [-0.87493138, -2.03693277, 5.01305 ], [-0.8912978 , -2.02748378, -1.21305], [ 0.26489725, -2.2015 , 5.01305], [ 0.25364439, -2.2015 , -1.21305], [ 1.3269198 , -1.7759744 , 5.01305], [ 1.32258793, -1.77847528, -1.21305], [ 2.03616649, -0.87625871, 5.01305], [ 2.02936825, -0.8880338 , -1.21305]]) # drehwinkel um panels korrekt auszurichten self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360, 360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210, 240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420, 420]) # ladder und layer ids self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21]) # generierung der look-up tabels für u/v -> x/y/z transformation self.transformation = {} self.layersLadders = {} for i in range(len(self.panelIDs)): self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]] self.layersLadders[str(self.panelIDs[i])] = [panelLayer[i], panelLadder[i]] def loadData(self, file, path='.'): self.eventTree = ur.open(f'{path}/{file}.root:tree') # liest den event tree aus, man muss das voll schlüsselwort angeben def getData(self, keyword: str): try: return self.eventTree.arrays(keyword, library='np')[keyword] except: return KeyError # generiert für jeden cluster eine event nummer def genEventNumbers(self, clusters): eventNumbers = [] for i in range(len(clusters)): eventNumbers.append(np.array([i]*len(clusters[i]))) return flatten(eventNumbers) # organisiert mc und digit daten aller events um, sodass sie zu clustern passen def getEventData(self, relations, *args): returnList = [] for i in range(len(args)): stuffList = [] for item in relations: stuffList.append([0] * len(item)) returnList.append(stuffList) for i, references in enumerate(relations): for k, index in enumerate(references): for j in range(len(args)): returnList[j][i][k] = args[j][index] if len(returnList) == 1: return returnList[0] else: return returnList def flatten(self, structure, max_depth=None, current_depth=0): flat_list = [] for element in structure: if isinstance(element, (list, np.ndarray)) and (max_depth is None or current_depth < max_depth): flat_list.extend(self.flatten(element, max_depth, current_depth + 1)) else: flat_list.append(element) return np.array(flat_list, dtype=object) # generiert alle pixel matrizen aller events def getClustersFlattened(self, uCellIDs, vCellIDs, cellCharges, clusterDigits, matrixSize=(9,9)): length = 0 start = 0 for item in cellCharges: length += len(item) events = [0] * length plotRange = int(np.round(matrixSize[0]/2)), int(np.round(matrixSize[1]/2)) for event in range(len(cellCharges)): adcValues = [] digitsU = uCellIDs[event] digitsV = vCellIDs[event] digitsCharge = cellCharges[event] digitIndices = clusterDigits[event] for indices in digitIndices: cacheImg = np.zeros(matrixSize) maxChargeIndex = digitsCharge[indices].argmax() uMax = digitsU[indices[maxChargeIndex]] vMax = digitsV[indices[maxChargeIndex]] for index in indices: uPos = digitsU[index] vPos = digitsV[index] uu = int(uPos) - int(uMax) + plotRange[0] vv = int(vPos) - int(vMax) + plotRange[1] if uu >= 0 and uu < matrixSize[0] and vv >= 0 and vv < matrixSize[1]: cacheImg[uu,vv] = digitsCharge[index] adcValues.append(cacheImg) stop = len(adcValues) events[start:start+stop] = adcValues start += stop return np.array(events, dtype=object) # rotiert und verschiebt eine Koordinate def rotShiftVector(self, vector, angle, shift=[0,0,0], scale=1): theta = np.deg2rad(angle) rotMatrix = np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]]) scaleMatrix = np.array([[1,0,0],[0,1,0],[0,0,scale]]) return rotMatrix.dot(scaleMatrix.dot(vector)) + shift # berechnet die koordinaten aller Events def getCartesianFlattened(self, uPositions, vPositions, sensorIDs, transformations: dict): length = 0 start = 0 for item in sensorIDs: length += len(item) xArr, yArr, zArr = [0] * length, [0] * length, [0] * length for event in range(len(sensorIDs)): xyz = [] uPos = uPositions[event] vPos = vPositions[event] sensors = sensorIDs[event] points = np.vstack((uPos, np.zeros(len(uPos)), vPos)).T for point, id in zip(points, sensors): shift, angle = transformations[str(id)] shifted = rotShiftVector(point, angle, shift) xyz.append(shifted) if len(xyz) > 0: stop = len(xyz) xArr[start:start+stop] = np.array(xyz)[:,0] yArr[start:start+stop] = np.array(xyz)[:,1] zArr[start:start+stop] = np.array(xyz)[:,2] start += stop return np.array(xArr, dtype=object), np.array(yArr, dtype=object), np.array(zArr, dtype=object) # bestimmt die layer und ladder nummer eines events def getLayers(self, sensorIDs, layersLadders: dict): layers, ladders = [], [] for id in sensorIDs: layer, ladder = layersLadders[str(id)] layers.append(layer) ladders.append(ladder) return np.array(layers), np.array(ladders) # findet die fehlenden event referenzen in mc daten, setzt sie gleich -1 def findMissing(self, lst: list, length: int) -> list: return sorted(set(range(0, length)) - set(lst)) # füllt die mc-cluster beziehungs arrays mit fehlenden werten auf def fillMCList(self, fromClusters, toClusters, length): missingIndex = findMissing(fromClusters, length) testList = [-1] * length fillIndex = 0 for i in range(len(testList)): if i in missingIndex: testList[i] = -1 else: try: testList[i] = int(toClusters[fillIndex]) except TypeError: testList[i] = int(toClusters[fillIndex][0]) fillIndex += 1 return testList # organisiert mc daten eines events um def getMCData(self, toClusters, pdgs, xMom, yMom, zMom): pxList, pyList, pzList = [], [], [] pdgList = [] for references in toClusters: if references == -1: pxList.append(0) pyList.append(0) pzList.append(0) pdgList.append(0) else: pxList.append(xMom[references]) pyList.append(yMom[references]) pzList.append(zMom[references]) pdgList.append(pdgs[references]) return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list)