import numpy as np from numpy.typing import ArrayLike import uproot as ur from typing import Any, Iterable import os, warnings from .detectors import PXD from .common import FancyDict try: import pandas as pd _pandas = True except ImportError: _pandas = False class Rootable: """ this class uses uproot to load pxd data from root files and converts them into native python data structures. it can load the cluster information, uses the digits to generate the adc matrices, coordinates, layer and ladders and finally also monte carlo data. """ def __init__(self, data: dict = None) -> None: self.pxd = PXD() # the root event tree self.eventTrees = [None] # import flags self.gotClusters = False self.gotDigits = False self.gotMatrices = False self.gotCoordinates = False self.gotLayers = False self.gotSphericals = False self.gotMCData = False def where(self, *conditions: str) -> dict: return self.pxd.where(*conditions) @property def data(self) -> dict: return {'pxd': self.pxd.data} def __repr__(self) -> str: return repr({'pxd': self.pxd.data}) def __iter__(self) -> Iterable: return iter(self.pxd.data) def __len__(self) -> int: return len(self.pxd.data) def __getitem__(self, index: str | int | ArrayLike) -> FancyDict: """ this makes the class subscriptable, one can retrieve one coloumn by using strings as keywords, or get a row by using integer indices or arrays """ if index == 'pxd': return FancyDict(self.data['pxd']) elif isinstance(index, str): return self.data['pxd'][index] return FancyDict({key: value[index] for key, value in self.data['pxd'].items()}) @property def numEvents(self) -> int: """ this makes only sense if you use one file """ return len(np.unique(self.pxd['eventNumber'])) @property def numClusters(self) -> int: return len(self.pxd['clsCharge']) @property def particles(self) -> list: return np.unique(self.pxd['pdg']) def keys(self) -> dict: return {'pxd': self.pxd.keys()} def items(self) -> dict: return {'pxd': self.pxd.items()} def values(self) -> dict: return {'pxd': self.pxd.values()} def get(self, key: str, *args) -> np.ndarray: return self.pxd.get(key, *args) def pop(self, key: str) -> None: return self.pxd.pop(key) def stack(self, *columns, toKey: str, pop: bool = True) -> None: self.pxd.stack(*columns, toKey=toKey) def open(self, *fileNames: str, includeUnselected: bool = False) -> None: """ Reads the file off of the hard drive; it automatically creates event numbers. """ self.eventTrees = [] self.fileNames = [] branches = self.pxd.branches(includeUnselected=includeUnselected) self.multiplyFiles = True if len(fileNames) > 1 else False self.includeUnselected = includeUnselected for fileName in fileNames: file, _, treeName = fileName.partition(':') if not file.endswith('.root'): file += '.root' if not treeName: treeName = 'tree' # Setting the file name fileBaseName, _ = os.path.splitext(os.path.basename(fileName)) self.fileNames.append(fileBaseName) # Attempting to open the file and tree try: eventTree = ur.open(f'{file}:{treeName}') self.eventTrees.append(eventTree) eventKeys = set(eventTree.keys()) for branch_type, branch_list in branches.items(): missing_branches = set(branch_list) - eventKeys if branch_type == 'clusters' and missing_branches: warnings.warn(f"clusters from '{file}' will be reconstructed from digits,\n this means there might be inaccuricies") elif missing_branches: warnings.warn(f"Missing branches for {branch_type} in '{file}': {missing_branches}") except FileNotFoundError: raise FileNotFoundError(f"File {file} not found.") def getClusters(self) -> None: if self.gotClusters: warnings.warn('already loaded clusters parameters') else: for eventTree, fileName in zip(self.eventTrees, self.fileNames): self.pxd.getClusters(eventTree, fileName, self.includeUnselected) self.gotClusters = True def getDigits(self) -> None: if self.gotDigits: warnings.warn('already loaded cluster digits') else: for eventTree in self.eventTrees: self.pxd.getDigits(eventTree, self.includeUnselected) self.gotDigits = True def getMatrices(self, matrixSize: tuple = (9, 9)) -> None: if self.gotMatrices: warnings.warn('already loaded matrices') if self.gotDigits: self.pxd.getMatrices(eventTree=None, matrixSize=matrixSize) else: for eventTree in self.eventTrees: self.pxd.getMatrices(eventTree=eventTree, matrixSize=matrixSize) self.gotMatrices = True def getCoordinates(self) -> None: if self.gotCoordinates: warnings.warn('already loaded clusters coordinates') if self.gotClusters: self.pxd.getCoordinates(None) else: for eventTree in self.eventTrees: self.pxd.getCoordinates(eventTree) self.gotCoordinates = True def getSphericals(self) -> None: if self.gotSphericals: warnings.warn('already loaded spherical coordinates') if self.gotClusters: self.pxd.getSphericals(None) else: for eventTree in self.eventTrees: self.pxd.getSphericals(eventTree) self.gotSphericals = True def getLayers(self) -> None: if self.gotLayers: warnings.warn('already loaded clusters layers/ladders') if self.gotClusters: self.pxd.getLayers(None) else: for eventTree in self.eventTrees: self.pxd.getLayers(eventTree) self.gotLayers = True def getMCData(self) -> None: if self.gotMCData: warnings.warn('already loaded clusters mc data') for eventTree in self.eventTrees: self.pxd.getMCData(eventTree, self.includeUnselected) self.gotMCData = True def asStructuredArray(self) -> np.ndarray: """ this converts the data dict of this class into a structured numpy array """ # Create a list to hold the dtype specifications dtype = [] # Iterate through the dictionary keys and values for key, value in self.pxd.items(): # Determine the data type of the first value in the list sampleValue = value[0] if isinstance(sampleValue, np.ndarray): # If the value is an array, use its shape and dtype shapes = [val.shape for val in value] if not all(shape == shapes[0] for shape in shapes): fieldDtype = object else: fieldDtype = (sampleValue.dtype, sampleValue.shape) else: # Otherwise, use the type of the value itself fieldDtype = type(sampleValue) # Append the key and data type to the dtype list dtype.append((key, fieldDtype)) # Convert the dictionary to a list of tuples keys = list(self.pxd.keys()) dataList = [tuple(self.pxd[key][i] for key in keys) for i in range(len(self.pxd[keys[0]]))] # Create the structured array structuredArray = np.array(dataList, dtype=dtype) return structuredArray def asDict(self) -> dict: return {'pxd': self.pxd.data} def asDataFrame(self, popMatrices: bool = False): if _pandas: if self.gotMatrices and not popMatrices: raise TypeError('pandas does not handle 2D matrices') if popMatrices: self.pxd.pop('matrix') return pd.DataFrame(self.pxd.data) else: raise ImportError('pandas is not installed on this system')