import numpy as np from numpy.typing import ArrayLike import uproot as ur from concurrent.futures import ThreadPoolExecutor from typing import Any, Iterable import re class Rootable: """ this class uses uproot to load pxd data from root files and converts them into native python data structures. it can load the cluster information, uses the digits to generate the adc matrices, coordinates, layer and ladders and finally also monte carlo data. """ def __init__(self, data: dict = None) -> None: # these are the sensor IDs of the pxd modules/panels from the root file, they are # use to identify on which panels a cluster event happened self.panelIDs = np.array([ 8480, 8512, 8736, 8768, 8992, 9024, 9248, 9280, 9504, 9536, 9760, 9792, 10016, 10048, 10272, 10304, 16672, 16704, 16928, 16960, 17184, 17216, 17440, 17472, 17696, 17728, 17952, 17984, 18208, 18240, 18464, 18496, 18720, 18752, 18976, 19008, 19232, 19264, 19488, 19520]) # every line in this corresponds to one entry in the array above, this is used # to put the projected uv plane in the right position self.panelShifts = np.array([[1.3985 , 0.2652658 , 3.68255], [ 1.3985 , 0.23238491, -0.88255], [ 0.80146531, 1.17631236, 3.68255], [ 0.82407264, 1.15370502, -0.88255], [-0.2582769 , 1.3985 , 3.68255], [-0.2322286 , 1.3985 , -0.88255], [-1.17531186, 0.80246583, 3.68255 ], [-1.15510614, 0.82267151, -0.88255], [-1.3985 , -0.2645974 , 3.68255], [-1.3985 , -0.23012119, -0.88255], [-0.80591227, -1.17186534, 3.68255], [-0.82344228, -1.15433536, -0.88255], [ 0.26975836, -1.3985 , 3.68255], [ 0.23326624, -1.3985 , -0.88255], [ 1.1746111 , -0.80316652, 3.68255], [ 1.15205703, -0.82572062, -0.88255], [ 2.2015 , 0.26959865, 5.01305], [ 2.2015 , 0.2524582 , -1.21305], [ 1.77559093, 1.32758398, 5.01305], [ 1.78212569, 1.31626522, -1.21305], [ 0.87798948, 2.03516717, 5.01305], [ 0.88478563, 2.03124357, -1.21305], [-0.26129975, 2.2015 , 5.01305], [-0.25184137, 2.2015 , -1.21305], [-1.32416655, 1.77756402, 5.01305], [-1.31417539, 1.78333226, -1.21305], [-2.03421133, 0.87964512, 5.01305], [-2.02960691, 0.88762038, -1.21305], [-2.2015 , -0.25954151, 5.01305], [-2.2015 , -0.24969109, -1.21305], [-1.77636043, -1.32625112, 5.01305], [-1.78138268, -1.31755219, -1.21305], [-0.87493138, -2.03693277, 5.01305 ], [-0.8912978 , -2.02748378, -1.21305], [ 0.26489725, -2.2015 , 5.01305], [ 0.25364439, -2.2015 , -1.21305], [ 1.3269198 , -1.7759744 , 5.01305], [ 1.32258793, -1.77847528, -1.21305], [ 2.03616649, -0.87625871, 5.01305], [ 2.02936825, -0.8880338 , -1.21305]]) # every entry here corresponds to the entries in the array above, these are # used for rotating the projected uv plane self.panelRotations = np.array([ 90, 90, 135, 135, 180, 180, 225, 225, 270, 270, 315, 315, 360, 360, 405, 405, 90, 90, 120, 120, 150, 150, 180, 180, 210, 210, 240, 240, 270, 270, 300, 300, 330, 330, 360, 360, 390, 390, 420, 420]) # the layer and ladder arrays, for finding them from sensor id self.panelLayer = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) self.panelLadder = np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21]) # all transpormaations are stored in a dict, with the sensor id as a keyword self.transformation = {} self.layersLadders = {} for i in range(len(self.panelIDs)): self.transformation[str(self.panelIDs[i])] = [self.panelShifts[i], self.panelRotations[i]] self.layersLadders[str(self.panelIDs[i])] = [self.panelLayer[i], self.panelLadder[i]] # these are the branch names for cluster info in the root file self.gotClusters = False self.clusters = ['PXDClusters/PXDClusters.m_clsCharge', 'PXDClusters/PXDClusters.m_seedCharge', 'PXDClusters/PXDClusters.m_clsSize', 'PXDClusters/PXDClusters.m_uSize', 'PXDClusters/PXDClusters.m_vSize', 'PXDClusters/PXDClusters.m_uPosition', 'PXDClusters/PXDClusters.m_vPosition', 'PXDClusters/PXDClusters.m_sensorID'] # these are the branch names for cluster digits in the root file self.digits = ['PXDDigits/PXDDigits.m_uCellID', 'PXDDigits/PXDDigits.m_vCellID', 'PXDDigits/PXDDigits.m_charge'] # this establishes the relationship between clusters and digits # because for some reaseon the branch for digits has a different # size than the cluster branch self.clusterToDigis = 'PXDClustersToPXDDigits/m_elements/m_elements.m_to' # these are the branch names for monte carlo data in the root file self.mcData = ['MCParticles/MCParticles.m_pdg', 'MCParticles/MCParticles.m_momentum_x', 'MCParticles/MCParticles.m_momentum_y', 'MCParticles/MCParticles.m_momentum_z'] # indices for events to be imported self.eventIndices = None # these two establish the relation ship to an from clusters and monte carlo # there more entries than in the cluster data, but there still mc data missing # for some cluster files self.clusterToMC = 'PXDClustersToMCParticles/m_elements/m_elements.m_to' self.mcToCluster = 'PXDClustersToMCParticles/m_elements/m_elements.m_from' # this dict stores the data self.data = data if data is not None else {} # list of pxd panels self.pxdPanels = [[[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 00 [[ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 01 [[ 1.4 , 1.4 , 1.4 , 1.4 , 1.4 ], [-0.36 , 0.89 , 0.89 , -0.36 , -0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 02 [[ 0.72 , 1.615, 1.615, 0.72 , 0.72 ], [-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 03 [[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 04 [[-1.25 , -0.365, -0.365, -1.25 , -1.25 ], [-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 05 [[-1.4 , -1.4 , -1.4 , -1.4 , -1.4 ], [ 0.36 , -0.89 , -0.89 , 0.36 , 0.36 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 06 [[-0.72 , -1.615, -1.615, -0.72 , -0.72 ], [ 1.25 , 0.365, 0.365, 1.25 , 1.25 ], [-3.12, -3.12, 5.92, 5.92, -3.12]], # 07 [[-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 08 [[ 0.345, 1.4 , 1.4 , 0.345, 0.345], [ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 09 [[ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 10 [[ 2.2 , 2.2 , 2.2 , 2.2 , 2.2 ], [ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 11 [[ 2.35 , 1.725, 1.725, 2.35 , 2.35 ], [-0.345, -1.4 , -1.4 , -0.345, -0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 12 [[ 1.85 , 0.78 , 0.78 , 1.85 , 1.85 ], [-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 13 [[ 0.89 , -0.36 , -0.36 , 0.89 , 0.89 ], [-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 14 [[-0.345, -1.4 , -1.4 , -0.345, -0.345], [-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 15 [[-1.48 , -2.1 , -2.1 , -1.48 , -1.48 ], [-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 16 [[-2.2 , -2.2 , -2.2 , -2.2 , -2.2 ], [-0.89 , 0.36 , 0.36 , -0.89 , -0.89 ], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 17 [[-2.35 , -1.725, -1.725, -2.35 , -2.35 ], [ 0.345, 1.4 , 1.4 , 0.345, 0.345], [-4.28, -4.28, 8.08, 8.08, -4.28]], # 18 [[-1.85 , -0.78 , -0.78 , -1.85 , -1.85 ], [ 1.48 , 2.1 , 2.1 , 1.48 , 1.48 ], [-4.28, -4.28, 8.08, 8.08, -4.28]]] # 19 # parameter for checking if coordinates have been loaded self.gotCoordinates = False def __getitem__(self, index: str | int | ArrayLike) -> np.ndarray | dict: """ this makes the class subscriptable, one can retrieve one coloumn by using strings as keywords, or get a row by using integer indices or arrays """ if isinstance(index, str): return self.data[index] return {key: value[index] for key, value in self.data.items()} def __setitem__(self, index: str | int | ArrayLike, value: dict | Any) -> None: """ Allows setting the value of a column by using strings as keywords, setting the value of a row by using integer indices or arrays, or setting a specific value using a tuple of key and index. :param index: The column name, row index, or tuple of key and index. :param value: The value to set. """ if isinstance(index, str): assert len(value) == len(self.data[list(self.data.keys())[0]]), 'value should have same length as data' self.data[index] = value elif isinstance(index, tuple) and len(index) == 2 and isinstance(index[0], str) and isinstance(index[1], int): key, idx = index assert key in self.data, f"key {key} not found in data" self.data[key][idx] = value else: assert isinstance(value, dict), "value must be a dictionary when setting rows" assert set(value.keys()) == set(self.data.keys()), "keys of value must match keys of data" for key in self.data: self.data[key][index] = value[key] def where(self, *conditions: str) -> dict: """ Filters the data based on the provided conditions. :param conditions: List of conditions as strings for filtering. The keys should be the names of the data fields, and the conditions should be in a format that can be split into key, operator, and value. :return: Instance of the class containing the filtered data. """ filteredData = self.data.copy() mask = np.ones(len(next(iter(self.data.values()))), dtype=bool) # Initial mask allowing all elements # Applying the conditions to create the mask for condition in conditions: match = re.match(r'(\w+)\s*([<>=]=?| in )\s*(.+)', condition) if match is None: raise ValueError(f"Invalid condition: {condition}") key, op, value = match.groups() op = op.strip() # remove any leading and trailing spaces if op == 'in': value = eval(value) mask &= np.isin(self.data[key], value) else: comparisionValue = float(value) fieldValues = self.data[key].astype(float) # Determine the correct comparison to apply operation = { '==': np.equal, '<': np.less, '>': np.greater, '<=': np.less_equal, '>=': np.greater_equal, }.get(op) if operation is None: raise ValueError(f"Invalid operator {op}") mask &= operation(fieldValues, comparisionValue) # Applying the mask to filter the data for key, values in filteredData.items(): filteredData[key] = values[mask] return self.__class__(data=filteredData) def __repr__(self) -> str: return str(self.data) def __iter__(self) -> Iterable: keys = list(self.data.keys()) numRows = len(self.data[keys[0]]) for i in range(numRows): yield {key: self.data[key][i] for key in keys} def keys(self) -> list: return list(self.data.keys()) def items(self) -> list: return self.data.items() def values(self) -> list: return self.data.values() def get(self, key: str) -> np.ndarray: return self.data.get(key) def pop(self, key: str) -> None: return self.data.pop(key) def stack(self, *columns, toKey: str, pop: bool = True) -> None: """ Stacks specified columns into a single column and stores it under a new key. :param columns: The columns to stack. :param toKey: The new key where the stacked column will be stored. :param pop: Whether to remove the original columns. """ # Check that all specified columns exist for column in columns: if column not in self.data: raise KeyError(f"Column '{column}' does not exist.") # Column stack the specified columns stackedColumn = np.column_stack([self.data[col] for col in columns]) # Flatten if it's 1D for consistency if stackedColumn.shape[1] == 1: stackedColumn = stackedColumn.flatten() # Store it under the new key self.data[toKey] = stackedColumn # Remove the original columns if pop is True if pop: for column in columns: self.data.pop(column) def loadData(self, file: str, events: int = None, selection: str = None) -> None: """ Reads the file off of the hard drive; it automatically creates event numbers. file: str = it's the whole file path + .root ending events: int = the number of events to import (None for all) selection: str = method of event selection ('random' for random selection) """ self.eventTree = ur.open(f'{file}:tree') numEvents = len(self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge']) if events is not None: if selection == 'random': self.eventIndices = np.random.permutation(numEvents)[:events] else: self.eventIndices = np.arange(min(events, numEvents)) clusters = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge'][self.eventIndices] else: clusters = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge'] self._getEventNumbers(clusters) def _getEventNumbers(self, clusters: np.ndarray, offset: int = 0) -> None: eventNumbers = [] for i in range(len(clusters)): eventNumbers.append(np.array([i]*len(clusters[i])) + offset) self.data['eventNumber'] = self._flatten(eventNumbers) def _getData(self, keyword: str, library: str = 'np') -> np.ndarray: """ a private method for converting branches into something useful, namely into numpy arrays, if the keyward library is set to np. keyword: str = the full branch name library: str = can be 'np' (numpy), 'pd' (pandas) or 'ak' (akward) see uproot documentation for more info """ try: if self.eventIndices is not None: data = self.eventTree.arrays(keyword, library=library)[keyword][self.eventIndices] else: data = self.eventTree.arrays(keyword, library=library)[keyword] return self._flatten(data) except: return KeyError def _flatten(self, structure: ArrayLike, maxDepth: int = None, currentDepth: int = 0) -> np.ndarray: """ this is a private function, that gets called during loading branches it flattens ragged array, one can set the depths to which one wants to flatten structure: the list/array to flatten maxDepth: int = the amount of flattening currentDepth: int = don't touch this, it's used for recursively calling """ flat_list = [] for element in structure: if isinstance(element, (list, np.ndarray)) and (maxDepth is None or currentDepth < maxDepth): flat_list.extend(self._flatten(element, maxDepth, currentDepth + 1)) else: flat_list.append(element) return np.array(flat_list) def getClusters(self) -> None: """ this uses the array from __init__ to load different branches into the data dict """ self.gotClusters = True for branch in self.clusters: data = self._getData(branch) keyword = branch.split('_')[-1] self.data[keyword] = data def getMatrices(self, matrixSize: tuple = (9, 9)) -> None: """ loads the digit branches into arrays and converts them into adc matrices """ if self.eventIndices is not None: uCellIDs = self.eventTree.arrays(self.digits[0], library='np')[self.digits[0]][self.eventIndices] vCellIDs = self.eventTree.arrays(self.digits[1], library='np')[self.digits[1]][self.eventIndices] cellCharges = self.eventTree.arrays(self.digits[2], library='np')[self.digits[2]][self.eventIndices] else: uCellIDs = self.eventTree.arrays(self.digits[0], library='np')[self.digits[0]] vCellIDs = self.eventTree.arrays(self.digits[1], library='np')[self.digits[1]] cellCharges = self.eventTree.arrays(self.digits[2], library='np')[self.digits[2]] # this establishes the relation between digits and clusters, it's still # shocking to me, that this is necessary, why aren't digits stored in the # same way as clusters, than one wouldn't need to jump through hoops just # to have the data in a usable und sensible manner # root is such a retarded file format if self.eventIndices is not None: clusterDigits = self.eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis][self.eventIndices] else: clusterDigits = self.eventTree.arrays(self.clusterToDigis, library='np')[self.clusterToDigis] indexChunnks = np.array_split(range(len(cellCharges)), 4) with ThreadPoolExecutor(max_workers=None) as executor: futures = [executor.submit(self._getMatrices, chunk, uCellIDs, vCellIDs, cellCharges, clusterDigits, matrixSize) for chunk in indexChunnks] results = [future.result() for future in futures] # Combine the results from all chunks self.data['cluster'] = np.concatenate(results).astype('int') @staticmethod def _getMatrices(indexChunks: ArrayLike, uCellIDs: ArrayLike, vCellIDs: ArrayLike, cellCharges: ArrayLike, clusterDigits: ArrayLike, matrixSize: tuple = (9, 9)) -> np.ndarray: """ this takes the ragged/jagged digit arrays and converts them into 9x9 matrices it's a rather slow process because of all the looping """ plotRange = np.array(matrixSize) // 2 events = [] for event in indexChunks: digitsU, digitsV, digitsCharge = np.array(uCellIDs[event]), np.array(vCellIDs[event]), np.array(cellCharges[event]) digitIndices = clusterDigits[event] adcValues = [] for indices in digitIndices: cacheImg = np.zeros(matrixSize) maxChargeIndex = digitsCharge[indices].argmax() uMax, vMax = digitsU[indices[maxChargeIndex]], digitsV[indices[maxChargeIndex]] uPos, vPos = digitsU[indices] - uMax + plotRange[0], digitsV[indices] - vMax + plotRange[1] valid_indices = (uPos >= 0) & (uPos < matrixSize[0]) & (vPos >= 0) & (vPos < matrixSize[1]) cacheImg[uPos[valid_indices].astype(int), vPos[valid_indices].astype(int)] = digitsCharge[indices][valid_indices] adcValues.append(cacheImg) events.extend(adcValues) return np.array(events, dtype=object) def getCoordinates(self) -> None: """ converting the uv coordinates, together with sensor ids, into xyz coordinates """ # checking if cluster parameters have been loaded if self.gotClusters is False: self.getClusters() # setting a bool for checking if coordinates were calculated self.gotCoordinates = True indexChunnks = np.array_split(range(len(self.data['sensorID'])), 4) with ThreadPoolExecutor(max_workers=None) as executor: futures = [executor.submit(self._getCoordinates, self.data['uPosition'][chunk], self.data['vPosition'][chunk], self.data['sensorID'][chunk]) for chunk in indexChunnks] xResults, yResults, zResults = [], [], [] for future in futures: x, y, z = future.result() xResults.append(x) yResults.append(y) zResults.append(z) self.data['xPosition'] = np.concatenate(xResults) self.data['yPosition'] = np.concatenate(yResults) self.data['zPosition'] = np.concatenate(zResults) def _getCoordinates(self, uPositions: ArrayLike, vPositions: ArrayLike, sensorIDs: ArrayLike) -> tuple[np.ndarray]: """ a private method for transposing/converting 2d uv coords into 3d xyz coordinates """ length = len(sensorIDs) xArr, yArr, zArr = np.zeros(length), np.zeros(length), np.zeros(length) # iterting over the cluster arrays for index, (u, v, sensor_id) in enumerate(zip(uPositions, vPositions, sensorIDs)): # grabbing the shift vector and rotation angle shift, angle = self.transformation[str(sensor_id)] # setting up rotation matrix theta = np.deg2rad(angle) rotMatrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) # projecting uv coordinates into 3d space point = np.array([u, 0, v]) # shifting and rotating the projected vector shifted = rotMatrix.dot(point) + shift xArr[index], yArr[index], zArr[index] = shifted return xArr, yArr, zArr def getSphericals(self) -> None: """ Calculate spherical coordinates for each cluster. """ # Checking if coordinates have been loaded if self.gotClusters is False: self.getCoordinates() xSquare = np.square(self.data['xPosition']) ySquare = np.square(self.data['yPosition']) zSquare = np.square(self.data['zPosition']) # Avoid division by zero by replacing zeros with a small number r = np.sqrt(xSquare + ySquare + zSquare) rSafe = np.where(r == 0, 1e-10, r) theta = np.arccos(self.data['zPosition'] / rSafe) phi = np.arctan2(self.data['yPosition'], self.data['xPosition']) self.data['rPosition'] = r self.data['thetaPosition'] = theta self.data['phiPosition'] = phi def getLayers(self) -> None: """ looks up the corresponding layers and ladders for every cluster """ if self.gotClusters is False: self.getClusters() layers, ladders = [], [] for id in self.data['sensorID']: layer, ladder = self.layersLadders[str(id)] layers.append(layer) ladders.append(ladder) self.data['layer'] = np.array(layers) self.data['ladder'] = np.array(ladders) def getMCData(self) -> None: """ this loads the monte carlo from the root file """ # the monte carlo data, they are longer than the cluster data if self.eventIndices is not None: pdg = self.eventTree.arrays(self.mcData[0], library='np')[self.mcData[0]][self.eventIndices] momentumX = self.eventTree.arrays(self.mcData[1], library='np')[self.mcData[1]][self.eventIndices] momentumY = self.eventTree.arrays(self.mcData[2], library='np')[self.mcData[2]][self.eventIndices] momentumZ = self.eventTree.arrays(self.mcData[3], library='np')[self.mcData[3]][self.eventIndices] else: pdg = self.eventTree.arrays(self.mcData[0], library='np')[self.mcData[0]] momentumX = self.eventTree.arrays(self.mcData[1], library='np')[self.mcData[1]] momentumY = self.eventTree.arrays(self.mcData[2], library='np')[self.mcData[2]] momentumZ = self.eventTree.arrays(self.mcData[3], library='np')[self.mcData[3]] # this loads the relation ships to and from clusters and mc data # this is the same level of retardedness as with the cluster digits if self.eventIndices is not None: clusterToMC = self.eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC][self.eventIndices] mcToCluster = self.eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster][self.eventIndices] else: clusterToMC = self.eventTree.arrays(self.clusterToMC, library='np')[self.clusterToMC] mcToCluster = self.eventTree.arrays(self.mcToCluster, library='np')[self.mcToCluster] # it need the cluster charge as a jagged/ragged array, maybe I could simply # use the event numbers, but I am too tired to fix this shitty file format if self.eventIndices is not None: clsCharge = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge'][self.eventIndices] else: clsCharge = self.eventTree.arrays('PXDClusters/PXDClusters.m_clsCharge', library='np')['PXDClusters/PXDClusters.m_clsCharge'] # reorganizing MC data momentumXList = [] momentumYList = [] momentumZList = [] pdgList = [] clusterNumbersList = [] for i in range(len(clusterToMC)): # _fillMCList fills in the missing spots, because there are not mc data for # every cluster, even though there are more entries in this branch than # in the cluster branch... as I said, the root format is retarded fullClusterReferences = self._fillMCList(mcToCluster[i], clusterToMC[i], len(clsCharge[i])) clusterNumbersList.append(fullClusterReferences) pdgs, xmom, ymom, zmom = self._getMCData(fullClusterReferences, pdg[i], momentumX[i], momentumY[i], momentumZ[i]) momentumXList.append(xmom) momentumYList.append(ymom) momentumZList.append(zmom) pdgList.append(pdgs) self.data['momentumX'] = self._flatten(momentumXList) self.data['momentumY'] = self._flatten(momentumYList) self.data['momentumZ'] = self._flatten(momentumZList) self.data['pdg'] = self._flatten(pdgList) self.data['clsNumber'] = self._flatten(clusterNumbersList) @staticmethod def _findMissing(lst: list, length: int) -> list: """ a private method for finding missing elements in mc data arrays """ return sorted(set(range(0, length)) - set(lst)) def _fillMCList(self, fromClusters: ArrayLike, toClusters: ArrayLike, length: ArrayLike) -> list: """ a private method for filling MC data arrays where clusters don't have any information """ missingIndex = self._findMissing(fromClusters, length) testList = [-1] * length fillIndex = 0 for i in range(len(testList)): if i in missingIndex: testList[i] = -1 else: try: testList[i] = int(toClusters[fillIndex]) except TypeError: testList[i] = int(toClusters[fillIndex][0]) fillIndex += 1 return testList @staticmethod def _getMCData(toClusters: ArrayLike, pdgs: ArrayLike, xMom: ArrayLike, yMom: ArrayLike, zMom: ArrayLike) -> tuple[np.ndarray]: """ after filling and reorganizing MC data arrays one can finally collect the actual MC data, where there's data missing I will with zeros """ pxList, pyList, pzList = [], [], [] pdgList = [] for references in toClusters: if references == -1: pxList.append(0) pyList.append(0) pzList.append(0) pdgList.append(0) else: pxList.append(xMom[references]) pyList.append(yMom[references]) pzList.append(zMom[references]) pdgList.append(pdgs[references]) return np.array(pdgList,dtype=list), np.array(pxList,dtype=list), np.array(pyList,dtype=list), np.array(pzList,dtype=list) def getStructuredArray(self) -> np.ndarray: """ this converts the data dict of this class into a structured numpy array """ # Create a list to hold the dtype specifications dtype = [] # Iterate through the dictionary keys and values for key, value in self.data.items(): # Determine the data type of the first value in the list sampleValue = value[0] if isinstance(sampleValue, np.ndarray): # If the value is an array, use its shape and dtype fieldDtype = (sampleValue.dtype, sampleValue.shape) else: # Otherwise, use the type of the value itself fieldDtype = type(sampleValue) # Append the key and data type to the dtype list dtype.append((key, fieldDtype)) # Convert the dictionary to a list of tuples keys = list(self.data.keys()) dataList = [tuple(self.data[key][i] for key in keys) for i in range(len(self.data[keys[0]]))] # Create the structured array structuredArray = np.array(dataList, dtype=dtype) return structuredArray